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Abstract. A neural network which models multistable per- at particular parameter constellations, for instance at a con-
ception is presented. The network consists of sensor antinuous phase transition, as indicated by a neural network
inner neurons. The dynamics is established by a stochastigarmesin 1994a). As yet these perceptions have not been
neuronal dynamics, a formal Hebb-type coupling dynam-investigated systematically at such singular conditions. Ac-
ics and a resource mechanism that corresponds to saturati@ordingly, a group of psychologists developed stimulus se-
effects in perception. From this a system of coupled differ-quences that give rise to such singular perception condi-
ential equations is derived and analyzed. Single stimuli ardions (Kruse et al. 1996). In the present paper, a corre-
bound to exactly one percept, even in ambiguous situationsponding network model, based on a general field theory
where multistability occurs. The network exhibits discon- (Carmesin 1994a, 1995) is proposed and analyzed.
tinuous as well as continuous phase transitions and models As a result, it is shown how the high susceptibility
various empirical findings, including the percepts of succestogether with an ‘attention adaptation’ give rise to novel
sion, alternative motion and simultaneity; the percept of osfphenomena such as oscillation percepts, so-called fluttering;
cillation is explained by oscillating percepts at a continuoushow the area of the hysteresis loop varies; how the empiri-
phase transition. cal data can be explained quantitatively in terms of neuronal
network parameters and resulting order parameters corre-
sponding to ‘Hebb cell assemblies’; how the same neuronal
) network models electroencephalographic (EEG) data (Basar-
1 Introduction Eroglu et al. 1993; Carmesin 1994a,b); and how the same
neuronal network might model neuropharmacological exper-
The investigation of perception, that is of the transformationiments currently being prepared concerning the physiological
of a configuration of physical stimuli into one psycholog- basis of fast stimulus binding during perception.
ical percept by the nervous system, has a long tradition.
For instance, Descartes suggested topologically correct or-
ganization of stimuli in the brain (Descartes 1664; Corsi2 External stimulations
1991) and Necker studied ambiguous perception of draw-
ings of cubes (Necker 1832). In general, the investigationPerception always provides the binding of single stimuli.
of ambiguous and illusionary percepts has become a fruitfuSuch stimulus binding may be especially simple in the case
scientific approach in psychology and physiology (see forof binding stimulus sequences to motion percepts. A very
instance Kohler 1920; Metzger 1975; Kruse 1988; Hock et Simple example of such stimulation is provided by a light
al. 1993; Basar-Eroglu et al. 1993). dot alternating stroboscopically with some frequencyn
The present investigation continues studies based on ver§ computer screen (Kruse et al. 1991) (Fig. 1). At very low
simple stimulus sequences that give rise to motion perceptdeguency, a human observer perceives the successive posi-
(Ditzinger and Haken 1989; Kruse et al. 1991; Hock et al.tions of the dot, so-calleduccessionAt intermediate fre-
1993; Basar-Eroglu et al. 1993; Carmesin 1994b). A com-guency, an observer perceives a moving dot, a so-caited
mon feature of such stimulations is that the emergence ofion perceptin particular, this is so-callestroboscopic mo-
percepts exhibits properties of phase transitions, such aéon (SM). At high frequency, an observer perceives two
multistability and hysteresis. In general, such phase transimultaneously illuminated dots, so-callsinultaneity
sitions may be characterized by order parameters and by Such dots may be combined to form larger patterns in or-
the susceptibility with which order parameter changes carfler to study novel phenomena. Here, two such combinations
be induced by small additional external stimuli. Such sus-are analyzed, both of which give rise to the additional phe-

ceptibilities may become very large or may even divergenomenon of two bistable motion percepts, rather than one
monostable motion percept. Accordingly, the motion per-

Correspondence taS. Arndt cepts that arise are calletroboscopic alternative motions
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o O ® - () 3 Network model

In this and the following sections, a network model is es-

tablished and analyzed for the particular case of SAM; this

model is transferred to the case of CAM as well as to quite

general stimulus binding later. A neural network usually
O . Q —_— . has two dynamical rules: the neuronal dynamics models the
Fig. 1. Stroboscopic stimulatiorAbscissatime. Ordinate, taken patterm. activity (.)f neurons and the _couplln_g dynamics mOdeIS. .the
Frequencyv is equal to the inverse period of periodic stimulation change in synaptic connections (Pineda 1987). In addition,

the network architecture and stimulation should be specified

u for an adapting neural network (Carmesin 1994a).

(1,0,1,0) +

Notion of couplings.Many neurophysiological and biomo-
lecular events occur at each synapse. In 1949 Hebb pro-
posed the neurophysiological postulate that the efficiency
with which a presynaptic neuron can stimulate a postsynaptic
(0,0,0,0) neuron increases whenever the presynaptic neuron stimulates
time the postsynaptic neuron successfully. Inherent in this postu-
< late is the replacement of neurophysiological and biomolecu-
lar events at each synapse by an abstract synaptic efficiency.
Such an abstract synaptic efficiency is usually called a cou-
(0,1,0,2) pling. In the present paper (Carmesin 1994b), the synaptic
efficiency is composed of two factors: a prestabilized factor
Fig. 2. Stroboscopic alternative motion (SAM). PatternFilled circles C_ijé (modeling slowly changing quantities such as Synap-
iluminated dots;open circles dots not currently presentedeft, vertical ~ tiC surface or number of parallel synapses) and a coupling
motion perceptright, horizontal motion percept K;;s (modeling rapidly changing quantities such as active
NMDA receptors). The increase in the fast couplingss
should be proportional to the slow coupling factqys (be-
2.1 Stroboscopic alternative motion cause these model the prestabilized biomass that takes part
in the synaptic modifications) and proportional to the fast
-~ . ) ] couplingsK;s (this proportionality is slightly hypothetical
The traditional stroboscopic alternatl\{e motion (SAM) (Hock in the sense that there is no clear empirical evidence for
etal. 1993; Ramachandran and Anstis 1985) uses a quadrali against it; it is plausible in the sense that many biomass
arrangement of dots (Fig. 2). The stimulation consists ofchanges are proportional to the current biomass, for various
two alternating patterns separated by a pause, each pattefBasons). Furthermore, the analysis of the network model
consisting of two dots on the same diagonal. An observet,ms out to be much simpler in terms of the (transformed)
perceives succession at low frequency, simultaneity at h'gf&ouplingst‘S = K5, because the dynamics exhibits a po-
frequency, and a motion percept at intermediate frequenctential in the space of the coupling®;;s. Such potentials
The motion percept is either a vertical motion of two dots have been assumed in some synergetics models (e.g., Kruse
or a horizontal motion of two dots, i.e., SAM. On a longer et a1, 1996). Of course, the modeled empirical quantities,
time scale, the motion percept switches from horizontal tog,ch as EEG potentials, are expressed in terms of the origi-
vertical and vice versa (Hock et al. 1993); more generally,ng couplingsK;;s (see, for example, Carmesin 1994b).
however, in the vicinity of the abovementioned singularity,  ajtogether, the binding of two stimuli is instantiated here
the percept switching time may become arbitrarily short.  py the product of a fast and a slow coupling factor. Accord-
ingly, these two factorg; ;s and(;;s are denoted asinding
factors The generality of the concept of binding factors is
emphasized elsewhere (Carmesin 1994a,b). In this spirit, the
present network model (Carmesin 1994a,b) may be denoted
as abinding factor model of perceptio-rom the point of
Kruse and Stadler (1995b) arranged dots equidistantly on siew of network theory, such stimulus binding is related to
circle. The first, third and fifth dots, etc., are elicited in the neuronal self-organization of topological order (see, for in-
first pattern, while the second, fourth and sixth dots, etc.stance, Weiss 1928; Marshall et al. 1941; Willshaw and von
are elicited in the second pattern. When the patterns alterder Malsburg 1976; Carmesin 1994c,1996).
nate with an intermediate frequency, an observer perceives
one of two bistable stroboscopic alternative motion percepts,
namely either a clockwise or a counter-clockwise circular3.1 Network architecture
motion of dots. While this so-called circular apparent mo-
tion (CAM) is quite similar to the above SAM, one obtains The network architecture is established by N sensor neurons
a richer phenomenology at singular stimulation conditionsn; and by N inner neurons; and by all possible couplings
that give rise to large susceptibilities. W;js among inner neurons; thus a couplifig ;s transfers
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2.2 Circular apparent motion
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?l - ?2 Here the prestabilized factors are chosen arbitrarily and

na < n3 only for the sake of explicitness. However, there are numer-
Fig. 3. Network architecture. Four inner neurons, np, ns, ng correspond ~ OUS empirical data about the efficiency of stimulus binding

to four stimulation dots. There are eight possible couplings; some of thesélepending on the time interval and on the distance (Korte
emerge according to the network dynamics. The emergent couplings estat#915; Caelli and Finlay 1981). Such stimulus binding effi-

lish binding of successive stimuli; this instantiates a motion percept ciencies indicate the values of the actual prestabilized factors
Cijs; more quantitatively, one may adjust the prestabilized
Cijs factors (;;5 so that the network generates those stimulus
A binding efficiencies that are observed empirically; this is be-

yond the scope of the present study.

Transferred signalsThe signals transferred by the couplings
are expressed in terms of a local formal field
hi :’ﬁi(t—l)—l
. s 16=6W.dm N
brmae Suwiatn ty D D CusWis(t = Dnylt —1-6) @)
Fig. 4. Prestabilized factorsAbscissa coupling delay times. Ordinate 6=0 Jj
prestabilized coupling factor instantiating preferential binding of successiveThat is, the external stimulation is transferred with a cou-

and neighboring stimuli pling with one time step delay and with weight 1, the subtra-
hend—1 expresses a threshold and inner neurons contribute
signals from a neurom, at a time step to a neuronn; according to the product of the prestabilized coupling factors

at a time stegt + 1 +6. The sensor neurons are stimulated and the square of fast couplings. Due to the dependence of

according to the above SAM (Fig. 1). Altogether the net-; 0N éuia, Previous time steps and the stochastic dynamics

work consists of four sensor neurons and four inner neuronintroduced below (5), the network establishe&,am-order

(Fig. 3). Markov process. This stochastic process may be expressed
in terms of an equivalent first-order Markov process by in-
troducing the following notation

3.2 Network dynamics n?(t) =n;(t —6); nf-(t —1)=n;(t—1-90) (3)
Neuronal states.The neurons take values/D at discrete SO ON€ gets
time stepg = 1,2,3, .. ., thatisn;(t) = 0/1 andn,(t) = n; = 1 8Buian N
i(2/iisl.tHere and in the following, the time index is omitted if h; = 7;(t — 1) — 1+ 5 CijsWhs(t — Ind(t — 1)
. 550

(4)

Prestabilized coupling factorsThis network model uses Stochastic neuronal dynamicEhe inner neurons, prefer to
couplingsW;;s that change during perception and so-calledfire according to the stimulating local field; however, there
prestabilized coupling factorg;;s that do not change dur- s the possibility that the inner neurons fire differently due
ing perception. This concept was introduced in Carmesirto random fluctuations. This is formalized by the Boltzmann
(1994b); there and in Carmesin (1994a) it is explicated howprobability with afluctuation parametef” as follows:
the fast couplingdV;;s might be instantiated by slow cou-

plings; neuroscientifically it is still an open question (the p5(y,) = exphini/T]
study of which is currently in preparation) whether rapid 1 +exph;/T]
synaptic modifications are relevant for percept formation. ) i ) ] o )

The prestabilized coupling factois;s encodeGestalt Coupling dynamicsA coupling weightW;;s is increased if
laws (Kohler 1920: Metzger 1975; Carmesin 1994a,b), suchihe presynaptic and postsynaptic firing are in accord. This is
as the rule that narrow and subsequent stimuli are boungodeled as follows:
preferentially. Accordingly, a space factgy; is used with AWi'}gbb: aW; 5Cij5nm§(t —1) (6)

Gij > Ckm for distance ¢; — n;) > distance 6 — ).

The human nervous system prefers vertical percepts tdiere, the coupling change\W!'$* is proportional to a
horizontal percepts. Thus the horizontal and vertical prestalearning parameter. and to the present couplingy’;;s (it is
bilized factors(, and¢, are equal when the four stimuli are typical for biological growth processes that biological mat-
arranged as a rectangle with length ratio (alias aspect ratidgr, like a coupling, increases in proportion to its present
equal to 8/5. weight).

Moreover, the preferential binding of subsequent stimuli
is expressed with a triangle-type function (Fig. 4)

®)

Dynamics of original couplingsThe square in the formal

6/ bmax for 0 < 6 < bmax field h; is due to the original coupling®;;s. Next, it is
Cijs = Cij 4 1— 5Wfd;5_m§r:ax for 6max < & < dwigtn; (1)  shown that the coupling growth law takes the same form

otherwise for the original couplingsK;;s = Wl?j(s. Using the partial
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derivativeaKijé/c’)Wijg — ZWijé, one getSAKHebb: ZWZ‘J‘(,‘ Table 1. Model parameters used in the network model

76
AWHEbb, thus Notation Parameter Comment
K a Learning parameter Network dynamics
Hebb — o i i
A Kij% = 20K;j5Cijenin; (t-1) (7 T Fluctuation rate Network dynamics
c,r Constraint parameters Neuronal resource limit
e, Be Coupling resource parameters Resource dynamics
Neuronal resource limit.Moreover, the above coupling dy- Frequency Stimulation
namics is modeled with the effective constraint that the total Ciis Prestabilized coupling factor ~ Codes Gestalt laws

coupling weight at a presynaptic neuranis constant. This
is formalized in terms of a Euclidean norm and a radius

in coupling space: The effect of the present resource deficits on the fast
Z Z Wiz;é =2 (8) couplings may be expressed in terms of a potential
. resource

& i _resource— __ avijﬁ (14)
An analogous relation is introduced for each postsynaptic— = /¢ OWijs
neuron: .

) ) with
Wes = 9

zﬁ: zj: ij6 — T ( ) irﬁssource: Wij§ Xij (15)

These constraints are in agreement with the empirical ob- Altogether, the total coupling change is the sum
servation that the connectivity is quite fixed at a neuronayy, .. = A Hebb . Appnom ., Ay resource (16)
(Reichert 1990). ! K K K

The above effective constraint is achieved roughly by

the following additional coupling changes: 3.3 Model parameter overview
/Prenorm 8Vpostnorm
AWPE™ = — 63 - 5 (10)  Table 1 gives an overview of model parameters used in
Wije Wijs the network model. The table indicates that the basic net-
with work dynamics of neurons and couplings is specified by
N two parameters: the learning rateindicating the veloc-
y/Prenom _ C(ZW‘Z‘ _ T2>2 ity of couplln_g changes and _the fluctuatlon r_dfeof neu-
J — s ronal fluctuations. It is realistic to assume limited resources
! at neurons and couplings. These are modeled with sim-
and ple difference equations and give rise to two parameters
N , for each mechanism; in this manner, four further parame-
ypostnorm — C(ZWizj& — TZ) (11) ters are plausible. The stimulation is characterized by a fre-
; ‘ quencyv. The Gestalt laws that narrow and successive stim-

. . . uli are bound preferentially are modeled (encoded) with cor-
Here ¢ is a constraint parameter which is larger than theresponding coupling factors;s. Altogether, the proposed

learning parametes. At the potential minimum, the neu- nenyork model appears quite straightforward and relatively
ronal resource constraints, (8) and (9), are obeyed. simple.

Resource deficitsAn essential feature of perception is that
a percept becomes unstable after a while. This is modele

here with so-calledesource deficitsX;;. Physiologically, 4o riew of the solution methodn order to solve the above

this includes the possibility that the fast couplings decayn . : :
; e . etwork model, one should specify the coupling matrices
very rapidly (within 100-1000 ms, for instance); as a result,that emerge as a result of thepcomf)tljined neueongl, coupling

the stimulus binding may be instantiated by the formatlonand resource deficit dynamics. This is achieved here as fol-

?gl? (rj]:acg)éoorngoupling states (that is of networks) within lows (for a very detailed description see Carmesina 1994a).
gnly ' - . irst the combined dynamics is identified as taking place in
These resource deficits may be interpreted as a lack of a he combined set of states, (W, X) of neuronal state&n? }

tention or as a lack of relevant neurotransmitters, thaX's, couplings and resource deficits. This set may be regarded as

is a measure for a deficit in metabolic or other resources. Abeing embedded in mector spacewith continuous values
resource deficity;; diminishes the corresponding fast cou- ¢, neurons, couplings and resource deficits and with the

plings neuronal space, coupling space and resource deficit space
AWESONe= — X5(t — 1) (12) as subspaces. In this state set, the combined dynamics es-
tablishes aMarkov processby construction. A reasonable
assumption of limited coupling resolution is introduced (this
assumption is obeyed, for example, by any computer simula-
AXij = —ac Xt — 1)+, Z Wijs(t — 1) (13)  tion). As a consequence, the process is ergodic. As a further
5 consequence, the averaged changes may be described by a

é Field theoretical solution of the network

A resource deficitX;; diminishes with time and increases
by a corresponding fast coupling ‘activity’
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vector field. The fast neuronal variables may be solved firstAdiabatic limits. Typically, the neurons change on the time
in a so-called adiabatic limit. The remaining coupling and scale of milliseconds, whereas the coupling change is slightly
resource deficit dynamics is again separated adiabaticallyglower and the resource changes are much slower. Thus one
with the coupling dynamics being faster than the resourcenay solve the motion of the fast neurons first by means of
deficit dynamics. The resulting coupling dynamics for adia-an adiabatic limit (that is the leading order of a systematic
batically fixed resource deficits is characterized by a differ-adiabatic approximation, as described in Haken (1983), and
ence equation that may be derived from a scalar potentiathen solve the changes of the slower couplings and resources.
The stationary states of the coupling dynamics are the loAnalogously one may solve the couplings secondly and the
cal potential minima. These stationary states represent theesource deficits thirdly.
possible emerging networks. As a consequence, the possible For the purpose of the adiabatic elimination of the fast
emerging networks may be investigated by analyzing the poneuronal degrees of freedom one may proceed as follows (for
tential minima. The couplings of these emerging networksextensive details see Carmesian 1994a). One may consider
establish the stimulus binding and thus the emerging pera fixed value of the slow couplings and resource deficits and
cepts. As a result of that analysis one obtains the resultingerform the average over the neuronal states (17), and one
emerging percepts and their changes due to the slow resoureeay use the fact that the state;} is generated indepen-
deficit dynamics and due to statistical fluctuations. dently from the statgn?}(t — 1). As a result one obtains
for the mean change of couplings the sum over all possible
neuronal events relevant for the changes:
4.1 Vector field

oN 2N buiidth
_ C
Because the combined dynamics is ergodic, it makes sens(éAW’ AX)) = Z Pt — DZP X (AW, AX) (21)
to characterize the mean changes of combined states in terms {A; (t=1)} {nf}

of the ensemble average of changes of combined states. Th,'\?

average may be expressed in terms of the conditioned probﬁ ext, one may tum to the adiabatic separation of the cou-
ability P[{n: }{Rs(t — 1)}, {n8}(t — 1), W(t — 1), T] that a lings from the resource deficits. To this end one may con-

. . : . sider adiabatically fixed resource deficits; formally (21) is
neuronal configuratiofin; } is taken at the time stepunder ’ .
L . . L expressed for fixed as follows:
the condition that at the time step— 1 the stimulation is

{fn;(t — 1)} and the combined state {8:%(t)}(t — 1), W(¢) 2N 2N buidin
and the fluctuation parameters In particular, given that (AW) = Z PH(t—1) ZPC x (AW) at fixedX (22)
n specifies{n?} with i = 1,2 .... N andé = 0, ..., dwign and (A (=D} (no}

Pr(t — 1) specifies the stimulation probability of patteun _ ) _
at time ¢ — 1, this average is the following sum over all These mean coupling changes establish another vector field

possible neuronal events that are relevant for the changesin coupling space. For the sake of explicitness, one may
express the mean coupling change (21) in terms of the com-

((4An, AW, AX)) ponents
oN 2N bwidth
N 2N Syjidth
= Y Prr-1) Y PO x(An, AW, AX) (17) 2, ?

o \N= % C . i .
Wi o (AW;j5) AZ Pty POx AWys  atfixed Xij5  (23)
{n;(t—-1)} {nf}
with the conditional probabilit . . . . L

P y Whenever a fixed point coupling stafé* is taken, it gives

PY = P[{nf}{n; }(t — 1), {nd}(t — 1),W(t — 1), T] (18) rise to an adiabatic solution of the resource deficits according

For the sake of explicitness, one may express the above traf (13):

sition probability in detail. For the cage= 0, the transition Ay =, x. (+ — 1)+ * 24
probability is equal to the Boltzmann probabiliB? (5). For i = —aXyt=1) 526: 9o (24)
the case > 0, the transition probability is of a deterministic

type according to (3), that is,

n?(t) =n;(t—6)=n;(t—1—(5—1)) = n;?*l(t ~1) (19) 4.2 Potential field

This deterministic probability may be denoted BY’. Alto- The mean coupling change in (23) is a vector field in cou-
gether, the above probability may be expressed as a produpting space. Next it is shown that this vector field turns out
as follows: to be a gradient of a scalar potential, the so-catibdnge

pC = pBpD (20) potential (Carmesin 1994a), that is, a potential field.

As a consequence, for each the mean Changes Potential theorem. In the adiabatic ||m|t, the mean cou-

((An, AW, AX)) establish a vector field in the combined Pling change, (23), is the gradient of a scalar potential as
space, because such mean changes are functions of the cofllows:

bined state due to the condition of the above conditioned 1%

probability and due to the fact that after averaging such meafdWijs) = oW

changes do not depend on the stimulation. This vector field i8
is called achange field Carmesin 1994a). with the scalar potential

(25)
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N N . .
V= VHebb+ Z Vjprenorm+ Z Vipostnorm_'_ Z Virj%source (26) 4.3 Unique blndmg
J i

ijé Next it is shown that each inner neuron has exactly one
oN presynaptic and one postsynaptic neuron. The conditions for
1/Hebb — ,QTZ Pt In Z# (27) it are stability (this is obeyed in practice) and normalization
" [this is also obeyed in practice due to the additional dynamics
(20)].
where the stimulatio{7; } is denoted by: and the formal  ypjque binding theorem. For coupling states that are lo-
partition functions are cally stable with respect to stochastic fluctuations and with

respect to variations of the formal temperatufeand that

2N bwidth g > h ‘

w— D o obey the normalization constraints: Each inner neuron has

d Z P expl-H"/T] (28) exactly one presynaptic inner neuron and one postsynaptic
{n?} inner neuron.

and the formal energy functions are

N Principle underlying the proof.There are two main under-
e =_ Z hin;  for a fixed stimulation: (29) lying reasons for the unique binding theorem. First, biolog-
pury ical matter does typically grow in proportion to its current
) . _ biomass; this fact is used for coupling growth here and it
Accordingly, the stable emerging networks are the local min-is inherent in the factoF;,s in the coupling dynamics (6).
ima of the scalar potential’. This gives rise to the fact that large couplings tend to grow
faster than small couplings. Second, biological matter does
typically grow within certain limits. Such a limit is used at

Interpretation of the change potentialhe change potential & N€uron in a quite local manner and is expressed via the
V establishes a synergetic potential function from which theconstraints (8) or alternatively via the additional dynamics
macroscopic phenomena may be derived as below and i(,lO).. It is already clear |ntU|t|v_er that the combination of
Kruse et al. (1996). By construction, the change potefifial the first and second reasons gives rise to a tendency towards

is neither an energy nor a free energy, because a free ener@2t€S With one coupling at a neuron. For the proof see Ap-

is defined in equilibrium statistics. In contrast, the changePendix B.
potential V' specifies mean changes at nonequilibrium states

of open or closed systems. Formally, the change potenti .

is similar to a free energy in the sense that it is a gen?“'L’ Modeling phenomena
eralization of the free energy for non-equilibrium systems

(Carmesin 1995). 5.1 Stroboscopic alternative motion SAM

5.1.1 Emerging couplings

Principle underlying the proofFormally, one may inter- Couplings emerging at a neuron for low and intermediate
pret the determination of the potential as an integration;stimulation frequencyDue to the unique binding theorem,
for instance one may integrate (25), so one mayiget  exactly one couplingV;;s remains at a postsynaptic neuron
—IOWij§<AWij§>dWij6- In this sense the method and the ™i- IN general, the remaining coupling connects neuronal

results obtained arquite general The fact that in the par- s;atesm'anq n; that are both nonzero; such states are in-
ticular present case the resulting integral may be expressed ﬁjl'ﬁcated in Fig. 1. Among such nonzero states, thesand
terms of an explicit andather simple functions due to the " ; are connected that have the Iargest. corre.spondlmg presta-
form of the probability (5) and of the whole network model. Pllized factor¢;;s. At low and intermediate stimulation fre-

In particular, methods of statistical physics are applied herdlU€ncy the emerging coupling has a time delay larger than
and generalized to the case of single objects such as singfaer (Fi9- 4). As a result, the emerging couplif;;s has

neurons and couplings, whereas statistical physics deals with'€ Minimum possible delayin = 1/8v, because couplings
systems in the limit of an infinite number of objects. For the with shorter delay cannot provide a postsynaptic signal to
proof see Appendix A a currently stimulated neuron (Fig. 1). Moreovey is a

neighbor ofn;. Each neurom; has a horizontal neighbor
nne) and a vertical neighbon,;. So, one of two possi-
ble nonzero couplings remain at a postsynaptic neurgn
Interpretation of the potential theorenThe potential V' namelyW; n) sun @Nd Wi 43y sy -

makes possible an intuitive and simple understanding and

analysis of the emerging networks in terms of local potential

minima. Moreover, one may derive for any desired stimula-Emerging coupling statesDue to the unique binding the-
tion (rather than equally distributed as above) the resultingorem the network model exhibits four stationary coupling
emerging networks. Conversely, one may design for a destates: vertical, horizontal, clockwise and counterclockwise
sired network an appropriate stimulation that gives rise to(Fig. 5). Humans, however, perceive mostly vertical or hor-
it. izontal percepts.
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ny n2 N =— M N <=—= M 5.1.2 Complete continuous dynamics

$ $ i T Next one may express the dynamics in terms of differential
guotients instead of difference quotients. Moreover one may

Ny n3 ng ——= n3 Ny =— n3 abbreviateX; () s, BY X1 and X; y(),6u, DY Xv. S0 one

. . . . gets the full continuous dynamics in terms of the following
Fig. 5. Emerging networksArrows indicate emergent couplings and thus " led diff ial . f IV this i
motion of dots in the generated motion percéyetft, vertical perceptmid- system of couple Iiferential equations [ ormally this is
dle, circular counter-clockwise percept (circular clockwise percept omitted Obtained from (13), (23) and (26) via the transformation of

in figure); right, horizontal percept (30)]:
dp _ OV
A possible explanation is a follows. Circular percepts 9t dp
are stable only fo, = (. If the preference for horizontal dp OV
percepts in humans is provided by a different system, that g =  9¢
is not by the present network, then that different systemy x,
generates a vertical percept preference;at ¢, and the P = —a.Xp + [B:.pC0SP

network provides a non-circular preference¢at# ¢,. So 9
there remains no stimulation with stable circular percepts.

As a consequence, only two coupling states remain
(Fig. 5). In one coupling state, all couplings are horizontal: with
Wi na),6un 7 0. In the other coupling state, all couplings are V/ = /Hebb 4. y/nom 1 resource
vertical: W; . s, 7 0. Due to the symmetry of the stimu-
lation and of the network, all vertical couplindg®’; ., s and
are equal and all horizontal coupling®; .;).s.., are equal. . .

For the purpose of an illustrative aézallgsis, the emerg—vresoume_ pCosp Xy +psing Xy (38)
ing coupling state is formally expressed in terms of a linearThe two potentiald "€t and 1"°™ are specified further in
combination of these two possible states. So the remaining48) to (56).
problem is two-dimensional. The decision between horizon-
tal and vertical emerging couplings may be expressed by the
angle variable in a polar coordinate system. That is, 5.1.3 Continuous phase transition

Wi h(),6mn = P COSQ; Wi v(i),6mn = pSING (30)

\

= —a.Xy + B.pSing (37)

Explicit form of the potential V" in the Wi nu).6un—

Wi w(),5un Plane for the case of relatively small prestabilized

couplings. Because the only candidates for nonzero cou-
lings areW; i) su. aNd Wi ().6un» the formal local field

2) takes the form

Resource deficit dynamics in terms of polar coordinates.
One may derive the resource changes by inserting (30) int
(13), so that one gets

AXi h@),6un = — ¥ Xih(i),un + Bep COSP e ni(i -0

AX 0(),6un = —CeXiu(@),omn T Bep SING (31) * 5 Gih(i).bun W2 iy, (& = Dy (¢ — L — Swin)

Next one may derive the corresponding coupling changes by 1 )

inserting (30) into (12), so that one obtains * 560,600 Wio(i).ou (= Dot — 1= bwin) - (39)

AW S0 o @) = =X ngiy, s (t — 1) Only three stimulation patterns occur with nonzero proba-

AWres(o)uzce ) = @).6un (E — 1) (32) bility P*, namelyu = 1: (01, N2, N3, ng) = (1,0,1,0), = 2:
7,v(2),0Min l ;U2 in

(0,1,0,1) andy = 3: (0,0,0,0). The correspondlng proba-
This coupling change may be expressed in terms of a poteryjjities P* are (Fig. 1)
tial

1
gy/resource Pt = forp=1,2,3 40
AWi)h(i)ﬁ’r\Aeiiource = — aW o (33) 3 H ( )
(0 0in In the case being considered of relatively small prestabi-
and lized couplings, a neuron; can in practice only fire if the
91/ resource corresponding sensor neuron fired at the previous time step,
AW, (i), sgsoumce = — oW (34) thatis ifn;(t — 1) = 1. In this case the thresholdl cannot
,0(),min be overcome without,{t—1) = 1. For the sake of simplicity
with one may express this as follows [fof'(? — 1) = 1]:
resource: . . . . ) . X X 1
v Wi, Xi.163)800.+ Wi a0). 0 Xi.00).6m0 (35) hi = zci,h(i),ﬁwn Wih(i),ﬁmin (t — Dnne(t — 1 — dmin)

The above potential may be explained in terms of polar co- 1
ordinates. * 2 Gi0(0).bui W2 0 5n (¢ = iyt — 1 — bmin)

VeSO p COSGXi (i) omn * 0 SINGX i 0(3), 814 (36)  n! = —oo otherwise (41)
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As a consequence, the fprmal'energy f'or pattern 1 is obtained + exp[pz(zgi,h(,»)’émn cos ¢
ggrgr?é éené:_ 0 and by inserting (39) into (29) far= 1, 3. 2 o Sir? ¢>)/T]) (47)
H" = — n[Gi.n(i),6n Wi n(iy o (t — Dn2(t — 1= in) So the potential’He® is (27) up to an irrelevant term In4
= Gi,v(),mn Wz%u(i),émm (t — Lng(t — 1 — dmin)] and due taP* =1/3 (40):
— 13[Ci,h0). 00 W ) s (& — Dt — 1= Syin) vHeb= ag In (7 + 2 €xXpP°Gi hgi),oun €OS ¢/T]
— Gi,0(3), Swin va(i),amm (t —Lmo(t —1—6min)]  (42) + 2 eXPP?Ci vi).6un ST 0/ T]
Analogously one obtains + 4 expp?(Ci.n().sun COF &
H? = — 12l Gi,13), 0 Wih (i), 5 (E = D2t — 1= Syin) * Gio(i).on ST 0)/T1
= Cio(@),0n Wiy s & — Dna(t — 1 — 6min)] + expp*(2€;,n(s), sun COS ¢
— 14[Ci, n(i), 6uin Wz%h(i),éMin (t — Dna(t — 1 — 6min) + 2C; (i), S SIM ¢)/T]) (48)
— Gi,(3),6min va(i),amm (t = Dna(t — 1 — dwmin)]
H®= - (43) Lower limit frequency.For sufficiently low stimulation fre-

To determine the formal partition functions (28) one should 44€Nces’, one 9t j.sun = 0 (2F|g. 4). Then there oceurs a
determine the probabilitieB” (n;, n;) for the neuronal con-  2€70 coupling produdf; ; s, W7, ., SO no stimulus bind-
figurations ofr;(t — 1 — dwin) @andn(t — 1 — dyin) for the ing anq no motion percept occurs. The limit frequency is
stimulation patterru at timet while the other state$n?} determined as follows.

are irrelevant due to zero couplingg;;s (30). So one gets

z" =0 forp=3and Potential V at small couplingsFor small prestabilized cou-
4 4 pling factors¢;;s one obtains small couplingd’;;s. So it
VAR Z PP(ny,na) Z exp[H*/T] (44)  is adequate to consider a power series expansion up to the
it 1= Syin), n1ms order 4 of the potential’; this is the essence of so-called
74t =1 omin) Ginzburg-Landau theory (Landau and Lifschitz 1979). Here

Because we are interested in the phase transition dynamicene may first consider fixed resource deficits. Up to fourth
the probabilitiesP? (n;,n;) are not essential here; for sim- order in the couplings, the potentiklHeP? takes the form

plicity one may thus approximate these as being equal, that ap?
is by 1. So one gets yhHeb = _ 6 |Sih)dun COS ¢ + Ci (i), s SIN @
4 4 2 2
1 3p° 2 3p° 2 4
7t = p Z Z exp[H*/T] e CZ iy s COS & + 87 (i), SIN' @
A P2
L, + o COS GSIT 6 Ci i), bun i), v (49)
1
Z?% = p > > explH?/T] (45) Due to the emergence of two couplings (30), the nor-
=1 uin) iz, malization potentials (10) take the form
n3(t—1—bMmin prenorm _ y -postnorm _ 2 .2\2
Inserting (42) and (43) and expanding the 16 possible conyi Vi olp” =) (50)
figurations, yields: Up to the irrelevant constantr*, the sum of these potentials
, 1 ) takes the form
7r=7= (7 + 2 XD 1), W ny o (E — 1)/T1 N N
Vnorm = Vprenorm+ VPOS norm
+2 eXpEi,v(i),(?Min Wz%v(i),éMin (t - 1)/T] Ez: ! Ej: J
+ 4 €XPLi 1) uin W h(iy 0 (E — D/ T = 2Nep* — a2 Nep? (51)
* Giwi) b Wiy, (0 = 1/ T] Thus at fixed resource deficits, the potential takes the form
+ eXP[ ;. n(i), 6uin Wz%h(i,),émm (t—-1)/T Vo= yHeeb ynom = (4, A,)p? + (By — Bo)p® (52)
£ 26, o). Wizw(i)mn t—1) /T]) (46)  With abbreviations
. Ay = —4Ncr?
Next one may use polar coordinates: a _
L, 1 , Ay = G[Ci,h(i),émn 0 ¢ + Ci (i), sum SIM ¢
7t =7c= 4 (7 + ZEXp[o Ci,h(i),&Mm cog ¢/T] By = 2N¢
+2 2¢, oy s SIP /T _ 3 3 -
exp[OZCL,U(L),(st S (b/ ] By = a7 Ciz,h(i),zSMm cod o+ a7 Ciz,v(i),(SMin sin? )
+ 4. expP?(Gi (i), sy COS ¢

1 .
+ Ci,v(i),5Min Slr]2 ¢)/T] + 2T CO§ ¢ Slnz ¢ Ci.,h(i),(sMin Ci.,v(i)ﬁmin (53)
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Fig. 6. Continuous phase transitiodbscissa order parameter radius;
ordinate potentiall” at fixed order parameter angte Local minima occur
at fixed¢ locally stable order parameter radjudUpper curve prestabilized
couplings¢ below critical valugl. with p = 0 (no stimulus binding)Middle

curve ¢ slightly above(. with small but nonzero order parameter radius

p # 0. Lower curve ¢ above(. with nonzero order parameter radips O.
Continuous phase transition: the stable order parameter radaianges
continuously as a function of the parametérthat is of¢

Fig. 7. DisambiguationAbscissaorder parameter angtg ordinate poten-
tial 17Hebb at fixed nonzero order parameter radiug.ocal minima occur at
fixed p locally stable order parameter angte Upper curve equal presta-
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422 (¢ (54)
Hence the critical prestabilized coupling factor is

6
Cc = aAl (55)
Thus the abbreviation parametdrtakes the form

a
A= (60 (56)

The prestabilized coupling may be varied according to
the frequencyy, for instance (Fig. 4); this yields the phase
transition scenario of Fig. 6.

For any nonzero fixed radiysone gets one or two local
minima: one corresponding to a vertical percept, one corre-
sponding to a horizontal percept (Fig. 7).

5.2 Circular apparent motion
5.2.1 Network theory

The case of the CAM can be treated analogously. The net-
work model is established by one inner neurop and
one sensor neuron; for each stimulus dot. For instance,
eight stimulus dots are positioned equidistantly on a cir-
cle (Kruse et al. 1995). There are eight corresponding inner
neurons. Any two neurons are connected with a coupling
including a prestabilized coupling factor. The prestabilized
coupling factors, the neuronal dynamics and the coupling
dynamics are as above.

The properties of the network model can be analyzed by
using the general potential and binding theorems. In accor-
dance with the unique binding theorem, each inner neuron
is connected to exactly one other inner neuron in the emerg-
ing cell assembly. Moreover, this other inner neuron is a
neighboring neuron, following Gestalt laws (see Sect. 3.2).

bilized factors for horizontal and vertical couplings yield equally stable SO there remain just two locally stable coupling states, one

horizontal and vertical perceptisower curve prestabilized horizontal cou-

of which binds the stimuli in clockwise order, the other in

pling factor twice as large as vertical coupling factor yields stable horizontalcounter-clockwise order.

percept only. Result: no mixed percepts emerge (disambiguation)

This potential is the basis for the phase transition scenari

6'-3.2.2 Resulting phenomena

according to Ginzburg-Landau theory (Landau and LifshitzSuccession at low frequencyt low frequency, the radius
1979) as follows. The complete set of differential equationsorder parameter (Fig. 6) is zero, So no motion percept occurs.

is given in Appendix C.

Oscillation at frequencies near the critical frequency of the
continuous phase transitionin the vicinity of the continu-

Phase transition scenarioFor positive abbreviation param- ous phase transition, the potential barrier that separates cou-

eter A = A; — Ay, the potential has one minimum at= 0,

pling states with clockwise and counter-clockwise motion

that is, no couplings emerge, hence no percept is genepercepts is very low. In addition, the current coupling state
ated. AtA = 0 there occurs a continuous phase transition.pecomes increasingly destabilized due to the limitation of

The order parameters are characterized irnptgeplane. For
simplicity, one may study the dependences separately.

coupling resources. When the next stimulation occurs, this
state is already destabilized, due to the low potential barrier,

For any fixed angle, one gets the classical scenario of &o the other motion percept is realized. Overall, the motion
continuous phase transition dt= 0. This may be analyzed percept oscillates. This is the same as the percept of os-
guantitatively as follows. In accordance with the unique cillating dots. So the resulting percept is ‘dot oscillation’,

binding theorem, the locally stable states arepat 0 or

or so-called fluttering. This phenomenon is particularly in-

at ¢ =7 /2. So it suffices at the phase transition to considerteresting because it shows that the potential barrier can be

the larger of the two prestabilized factorsn, which may
be denoted by; the corresponding cér sirf is 1. Thus
at the transition A, takes the form

overcome in a completely deterministic manner. While this
is remarkable in itself, it allows in addition efficient quanti-
tative experiments.
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CAM at high frequencyWhen the frequency is well above the spokes are perceived as rotating in the same direction
the critical frequency, then the potential barrier separatingas the wheel, while the opposite direction is perceived at
cell assemblies of clockwise and counter-clockwise perceptappropriately high velocity.

is high. Thus the limitation of coupling resources destabilizes

the current state so slowly that several stimulations occur be-

fore the percept switches. The motion percept therefore occomparison with experimentslhe indicated phenomena
curs with a hysteresis phenomenon (Kruse et al. 1995; angre in agreement with psychophysical experiments (Kruse et
analogously in Hock et al. 1993). Overall, from this point 3. 1996). Further experiments concerning critical exponents
of view, the oscillation corresponds to a (deterministic) ten-and fluctuations at the continuous transition are currently
dency to avoid the old state at the next Stimulation, Whereaﬁ», progress and in preparation_ Moreover, the low Change
the hysteresis corresponds to a tendency to remain at the ofsbtential barrier at the continuous transition gives rise to
state at the next stimulation; oscillation and hyStereSiS algensitive measurement conditions; these m|ght be advanta-

thus two aspects of the same phenomenon — the negative geous for experiments concerning underlying psychophysi-
positive correlation with the old state. cal mechanisms.

6 Discussion 7 Physiological models for fast couplings

Continuous phase transitionBy definition, a phase transi-
tion is called continuousif the order parameter increases
continuously as a function of the control parameter.

For the case of vanishing resource deficits and equal
preference for the vertical and orthogonal percept, that i
(v = (p, the two-dimensional order parameter, f) is (0,0)
at the transition(.; furthermore, for increasing the two-
dimensional order parametep,(p) becomes nonzero as a

So far, the neural network has been used to model psycho-
logical and physiological empirical findings about percep-
tion. The neuronal dynamics and the coupling dynamics are
sthus biologically quite plausible, due to the neuronal fluctu-
ations and due to the Hebb rule.

Each of the neurons modeled here for a single stimu-
lus dot is considered to correspond to various nerve cells,

continuous function of the coupling. Thus a continuous presumably distributed in various cortical maps and areas.

phase transition occurs. The control parameter of this con- AS. discussgd at the be.gif?”"‘g of the network model,
tinuous phase transition is not uniquely determined; instead€PPian coupling is, by definition (Hebb 1949), an abstract
there are several possible choices: for instance one may if?nd €ffective quantity, the physiological and molecular basis

crease the prestabilized couplings, decrease the temperatufd, Which has to be investigated (Brown et al. 1990; Kan-
or increase the stimulation frequency. The last choice is re; el etal. ;991)' Helre th? pqssmle negronal Instantiation of
alized in the experiments (Kruse et al. 1996). fast Hebbian coupllr_lgs is dlscus_sed in more detail (Flohr
For the case of nonvanishing resource defigits with 1991, 1394). According fo a possible mechanism elaborated
the introduced resource dynamics, the two-dimensional or!" Carmesin (1994a,b), f"."St coupl!ngs might be mstantlated
der parameterd(, p) is again (0,0) at the transitioq. and by small subnetworks indirectly. It is, however, also possible
again the two-dimensional ordér parametefsp] increase that fast couplings are instantiated directly on the basis of
continuously for increasing prestabilized couplingSo the appropriate neuro-transmitters, a popular candidate beln'g the
phase transition remains continuous. NMDA mechanism (Flohr 1991, 1994). The fast formation
For the sake of a complete discussion, it is added her@f couplings has already been proposed by von der Malsburg

that the phase transition does have several properties thgv'"ShaW and von der Malsburg 1976, Flohr 1991. Here It
are usually common to discontinuous phase transitions: th& Suggested that fast couplings do foamd decay rapidly,
potential function)” becomes asymmetric when the resource@ccording to the modeling of the EEG data (Carmesin
deficits become asymmetrik;, # X,, the angle component 1994a,b). On the basis of the present experimental and theo-

¢ of the order parameter varies discontinuously. However,retical work, one may determine perception order parameters

the essential point is that this is only due to the singulardUit® Precisely in the vicinity of a continuous phase transi-
behavior of polar coordinates in the vicinity of the pole: tion; in particular, stochastic effects become relatively small

the actual two-dimensional order parameter change remainl§ comparison with the coupling resource effects and the
infinitesimal, as does the potential barria#/ . neuronal resource effects. As a result, the effect of possible

fast couplings may be studied quantitatively with relatively
high precision. Accordingly, the effect of neuropharmaco-
logical variations of possible fast couplings on perception
order parameters could be investigated quantitatively in fu-
ture experiments.

Scenario at high stimulation frequencjpue to the decrease
in prestabilized coupling factors for short time alias high
stimulation frequency (Fig. 4), a similar continuous phase
transition occurs at high stimulation frequency; such a tran-

sition is observed experimentally. In principle, there may

occur additional percepts at high stimulation frequency, due® Conclusion

to the fact that the prestabilized factor for the binding of suc-

cessive stimuli may become smaller than that for the bindingA general neuronal network model for stimulus binding dur-
of nonsuccessive stimuli. Corresponding effects may be obing perception (Carmesian 1994a,b) is extended, improved
served in a film of a spoked wheel rotating: at low velocity and analyzed. The network is characterizedfést plastic
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couplings, prestabilized coupling factors, slow resource dy- The fast couplings may be instantiated either by small
namics and by very fast stochastic neuronal dynamii¢tee  subnetworks or by fast neurotransmitters. Experiments that
fast and prestabilized coupling factors are essential for stimmight investigate therigin of fast stimulus bindingluring
ulus binding, so they are called binding factors and the netperception are currently in preparation.
work model is denoted as thH#@nding factor model of per-
ception

General analytic results are derived in the framework of
a field theory; in particular, potentialthat characterizes the
dynamics is derived explicitly and it is shown that ambigu-
ous stimulus configurations adisambiguatedThe present

Appendix A. Proof of the potential theorem

Organization of the proofFirst the coupling average is
transformed successively until a useful form is obtained.

theory is based on the Hebb rule, is physiologically pIau_Second the potential gradient is transformed successively

sible and may be understood as a special case of a mot m'lt.? l(stefuIbf(_)rm IS okljtamed. Third the two results are
general theory of neuronal adaptation; accordingly, quan-I entiied as being equal.
titative comparisons of learning and perception are possi-
ble (Carmesin 1994a). Structurally, the present network pros

: : : o Part I Transformation of the coupling averagdo begin
vides a straightforward system for the instantiation of psy-_ . o
chological Gestalt laws, due to the prestabilized couplin with, one may take (23) and express the conditioned proba-

O C D B
factors. bility P~ in terms of the product oP* and P, moreover

For prototvpical stimulus sequences. vari nomena °2N€ may express the latter in terms of the probabilities in
P yp 9 ’ b . 5), because this product is the desired probability that a
are derived. Many of these phenomena are reported in Krus euronal statén,} is taken. So one gets

et al. (1996). Thus aontinuous phase transitios obtained § ' g

and characterized by a two-dimensional order parameter, 2N 2N Swidtn N
one component of which varies continuously and describegAW,;s) = Z pH Z PP HPB x AWijs (A1)
a high susceptibility for external stimuli, while the other (A} (n?} i=1

component varies discontinuously and provides the disam-
biguation necessary for perception. At the continuous phas&lext one may insert the probabilities according to (5) and
transition, the slow resource dynamics becomes relevant an@Xpress these probabilities in the denominator with the sum
gives rise to the new phenomenon of fluttering. of two exponentials. So one gets

Experiments (Kruse et al. 1996) confirm the modeled oN 2N S
continuous transition, the fluttering mcludmg the determm— (AWyjs) = Z pr Z pp
istic percept oscillations, the change potential landscape in-

cluding its variation with the control parameter; the result- (a5} {n?}

ing disambiguation, preferential binding of narrow stim- N explhin:/T)

uli (Gestalt law) and hysteresis (Hock et al. 1993); and the X 5 AWijs (A2)
qualitative dynamics of the EEG brain potentials in the form i=1 Zm=0/1 explhini/T]

of P300 signals (Basar-Eroglu et al. 1993). Here one may express the product in the numerator and in

tion is advantageous for experimentSurrent and planned

experiments include EEG measurement of critical fluctua- 2" b
tions, quantitative determination of network parameters from(AWijs) = > P* Y P

2N bwidth

measurements of hysteresis loops, order parameter variation {A;} {n%}

in psycho-pathological persons, and order parameter varia- N

tion as a function of psychopharmaceutical application. % [Tiz1 explhini/T] AW, s (A3)
From a theoretical point of view, continuous phase tran- Hf\:’l Zii:o/l explh;n;/T] !

sitions are advantageous for the following reason: at the con- th ¢ th duct of
tinuous transition there occurs a singularity; as a result aIII.n € numerator, oné may express the product of exponen-

non-singular mechanisms become irrelevant. The singulafid!S 8s ﬁn exp&nentla(lj ofta Sdutrﬂ In the de”gm'”f‘“i[{ odr!e

mechanisms may be used for a system classification intbﬂ.‘gy gxcl angc; gpr(r)] uc ‘Zn t?sum according to the IIS_

so-called universality classes and for a detailed study of thérbutive law, that is, the product of sums over two neurona

relevant dynamics. values is equal to the sum over neuronal configurations of
Strictly speaking, these additional phenomena reIativizeDrOdUCtS‘ So one gets

the continuity of the transition. Nevertheless, perception phe- 2N

nomena can be investigated empirically at the continuoquWUQ = Z pH Z pD

2N bwidth

transition with the high precision typical of continuous phase (7} (n0)

transitions, thus a diagnostic method might be provided. The ‘ N

area of the hysteresis loop vanishes when approaching the « exp ;=1 hini/T] W (A4)
continuous phase transition. Z?: , Hi\_fl explhin: /] ijé

The slow resource dynamics consists of two components:
an amplitude componentodeling the typical P300 EEG Next one may identify the formal energy function in the
signal and astructural componentnodeling the typical loss numerator and express the product of exponentials as an
of attention for old percepts. exponential of a sum in the denominator. So one gets



250

2% 2N Owan Moreover, due to the fact that the coupling changdg o™
o) = H D resource ; &)
(AWijs) = Z P Z P and AW[s°"**may be averaged without effect here, one
(A} {n2} gets
exp[-H"/T ov
PEAYTL Ay as) (A = (A14)

Zi\;} eXpEj‘\:[]_ hznz/T] 8Wij5

Now one may identify the formal energy function in the
denominator. So one obtains

g.e.d.

Appendix B. Proof of the unique binding theorem

oN 2N dwiidth
(AWije)= > P >y~ PP Organization of the proofFirst the essential competition
{7} {n®} among the couplings is expressed adequately in multidimen-
expl-H"/T] sional polar coordinates. Second the emerging networks are
oN 16 (A6) analyzed as the potential minima by taking the derivatives
> (ns) EXPI-HH/T] and by extracting the conditions under which these deriva-
tives vanish.

Here one may identify the formal partition function in the
denominator. So one derives

oN 2N buiidth

expl—H* /T Proof. One may use multidimensional polar coordinates for
(AWys)=>_ P+ Y PP Pl Zu / ]Asz& (A7) the couplings as follows (10):

{7;} {n?} Wijé =r COS'l?ij(s

Wi+lj§ =r Sin’l?ijg COS’l9i+]_7j’§

Part Il: Transformation of the potential gradient-or the — W;jss1 = 7 SiNY; 5 SINY;41,js COSV;41 5,541 (B1)
purpose of a later comparison, one may perform the gradient

of the scalar potentialHebP _ _
The networks that are locally stable with respect to stochastic

91/ Hebb 2" 20 buin L expl-H"/T] o0H" fluctuations are specified by the local minima of the potential
oW, @ >opryp Tu OW,s V. Consequently, the partial derivatives of the potential
" {7y} {nf} Y with respect to the above angle variables vanish for these
(A8) networks, that is
with (4) ov =0 (B2)
OHH 9 1 aﬁmkﬁ
Weer = W (* 5 > ok [ﬁk(t -1 To determine the form of such a derivative, one may recall
8 8 km that any angular variablé,, ;s in the potentiall’ occurs in
6=2bwicth , terms of a co%v,,;5 or in terms of a sifid,,;5, because the
+ > Come Whns (t — 1l (¢ — 1)}) (A9)  couplings enter the potential in terms of squares [see (5),
§=0 (B1), (27), (28) and (29)]. Consequently, the derivative of

The above partial derivative yields nonzero terms only if the potential” with respect to such an angular variablg; s
the indices ofiV;;s are equal to the corresponding ones of IS proportional to si,, ;5 osty,;s, in accordance with the

Wiemes:. SO ONe gets chain rule. That is, each such derivative is of the form
oH" ov =g . . =
Wi = —CijsWijs(t — DnS(t — Dng (A10)  99,,;s SiNYy, 5 COSVpjsrest(T) = 0 (B3)

wherebyrest(1') denotes the remaining factor, which is a
function of the formal temperature. Consequently, a net-
oH" = _ ApyHebb/, (A11) work that is locally stable with respect to stochastic fluc-
OWijs Y tuations obeys either sih,, js C0S¥,,;5 = 0 or rest(1) = 0.
. . . The networks that do not obey s#p, ;s COS¥,,;s = 0 do
Next one may insert this result in (A8), so one gets obey rest(T) = 0: thus they vary with the formal temper-
7Hebb 2N 2N Swidth expl—H*" /T] ature, and henpe they are not stable with respect to tem-
— = Z pH Z PP AWHEPD (A12) perature variations. As a consequence, those networks that
OW: VAT ] . . .
wé o ay (n°} are locally stable with respect to stochastic fluctuations and
' with respect to variations of the formal temperatdredo
obey sind,,;s COSYy,;s = 0. This impliesd,,;s = 0 or
Part IlI: Identity of coupling average and potential gradient. Umjs =7/2. Thus [see (B1)Wixs is either O orr.

By comparison of this expression with (6) one obtains

By comparison of this expression with (A7) one obtains Moreover, one may recall the constraints [see (8)F
Hebb Yo s Wﬁljé. They imply that at each inner neurory,
(A Hebb, — OV (A13) there is exactly one nonzero couplifig,,;s = to another

ijé 8Wi|—]!§bb inner neuron.
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Analogously, the constraints? = Zj s Wiljé [see  Carmesin H-O (1994a) Theorie neuronaler Adaptioistér, Berlin
(8)] imply that at each inner neuron,,, there is exactly Carmesin H-O (1994b) Statistical neurodynamics: a model for universal
one nonzero COUp“n@ija = r from another inner neuron. properties of EEG-data and perpeption. Act_a Phys Slovaca 44: 311_—330
That is, each inner neuron is connected with exactly On(:',Carmesln H-O (1994c) Topological order in networks selforganized

. d with | . through local dynamics. In: @&el FG, Wagner T (eds) ICASSE Proc
presynaptic inner neuron and with exactly one postsynaptic  rraynhofer-Geselischatt, Erlangen, pp 53-60

inner neuron. g.e.d. carmesin H-O (1995) Neurophysics of adaption. Phys Essays 8(1)
Carmesin H-O (1996) Topology-preservation emergence by the Hebb rule
Appendix C. Complete set of equations with infinitesimal short-range signals. Phys Rev E 53(1)

Corsi P (1991) The enchanted loom. Oxford University Press, New York
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