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Abstract. A neural network which models multistable per-
ception is presented. The network consists of sensor and
inner neurons. The dynamics is established by a stochastic
neuronal dynamics, a formal Hebb-type coupling dynam-
ics and a resource mechanism that corresponds to saturation
effects in perception. From this a system of coupled differ-
ential equations is derived and analyzed. Single stimuli are
bound to exactly one percept, even in ambiguous situations
where multistability occurs. The network exhibits discon-
tinuous as well as continuous phase transitions and models
various empirical findings, including the percepts of succes-
sion, alternative motion and simultaneity; the percept of os-
cillation is explained by oscillating percepts at a continuous
phase transition.

1 Introduction

The investigation of perception, that is of the transformation
of a configuration of physical stimuli into one psycholog-
ical percept by the nervous system, has a long tradition.
For instance, Descartes suggested topologically correct or-
ganization of stimuli in the brain (Descartes 1664; Corsi
1991) and Necker studied ambiguous perception of draw-
ings of cubes (Necker 1832). In general, the investigation
of ambiguous and illusionary percepts has become a fruitful
scientific approach in psychology and physiology (see for
instance K̈ohler 1920; Metzger 1975; Kruse 1988; Hock et
al. 1993; Basar-Eroglu et al. 1993).

The present investigation continues studies based on very
simple stimulus sequences that give rise to motion percepts
(Ditzinger and Haken 1989; Kruse et al. 1991; Hock et al.
1993; Basar-Eroglu et al. 1993; Carmesin 1994b). A com-
mon feature of such stimulations is that the emergence of
percepts exhibits properties of phase transitions, such as
multistability and hysteresis. In general, such phase tran-
sitions may be characterized by order parameters and by
the susceptibility with which order parameter changes can
be induced by small additional external stimuli. Such sus-
ceptibilities may become very large or may even diverge
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at particular parameter constellations, for instance at a con-
tinuous phase transition, as indicated by a neural network
(Carmesin 1994a). As yet these perceptions have not been
investigated systematically at such singular conditions. Ac-
cordingly, a group of psychologists developed stimulus se-
quences that give rise to such singular perception condi-
tions (Kruse et al. 1996). In the present paper, a corre-
sponding network model, based on a general field theory
(Carmesin 1994a, 1995) is proposed and analyzed.

As a result, it is shown how the high susceptibility
together with an ‘attention adaptation’ give rise to novel
phenomena such as oscillation percepts, so-called fluttering;
how the area of the hysteresis loop varies; how the empiri-
cal data can be explained quantitatively in terms of neuronal
network parameters and resulting order parameters corre-
sponding to ‘Hebb cell assemblies’; how the same neuronal
network models electroencephalographic (EEG) data (Basar-
Eroglu et al. 1993; Carmesin 1994a,b); and how the same
neuronal network might model neuropharmacological exper-
iments currently being prepared concerning the physiological
basis of fast stimulus binding during perception.

2 External stimulations

Perception always provides the binding of single stimuli.
Such stimulus binding may be especially simple in the case
of binding stimulus sequences to motion percepts. A very
simple example of such stimulation is provided by a light
dot alternating stroboscopically with some frequencyν on
a computer screen (Kruse et al. 1991) (Fig. 1). At very low
frequency, a human observer perceives the successive posi-
tions of the dot, so-calledsuccession. At intermediate fre-
quency, an observer perceives a moving dot, a so-calledmo-
tion percept; in particular, this is so-calledstroboscopic mo-
tion (SM). At high frequency, an observer perceives two
simultaneously illuminated dots, so-calledsimultaneity.

Such dots may be combined to form larger patterns in or-
der to study novel phenomena. Here, two such combinations
are analyzed, both of which give rise to the additional phe-
nomenon of two bistable motion percepts, rather than one
monostable motion percept. Accordingly, the motion per-
cepts that arise are calledstroboscopic alternative motions.
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Fig. 1. Stroboscopic stimulation.Abscissa, time. Ordinate, taken patternµ.
Frequencyν is equal to the inverse period of periodic stimulation
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Fig. 2. Stroboscopic alternative motion (SAM). Pattern 1.Filled circles,
illuminated dots;open circles, dots not currently presented.Left, vertical
motion percept;right, horizontal motion percept

2.1 Stroboscopic alternative motion

The traditional stroboscopic alternative motion (SAM) (Hock
et al. 1993; Ramachandran and Anstis 1985) uses a quadratic
arrangement of dots (Fig. 2). The stimulation consists of
two alternating patterns separated by a pause, each pattern
consisting of two dots on the same diagonal. An observer
perceives succession at low frequency, simultaneity at high
frequency, and a motion percept at intermediate frequency.
The motion percept is either a vertical motion of two dots
or a horizontal motion of two dots, i.e., SAM. On a longer
time scale, the motion percept switches from horizontal to
vertical and vice versa (Hock et al. 1993); more generally,
however, in the vicinity of the abovementioned singularity,
the percept switching time may become arbitrarily short.

2.2 Circular apparent motion

Kruse and Stadler (1995b) arranged dots equidistantly on a
circle. The first, third and fifth dots, etc., are elicited in the
first pattern, while the second, fourth and sixth dots, etc.,
are elicited in the second pattern. When the patterns alter-
nate with an intermediate frequency, an observer perceives
one of two bistable stroboscopic alternative motion percepts,
namely either a clockwise or a counter-clockwise circular
motion of dots. While this so-called circular apparent mo-
tion (CAM) is quite similar to the above SAM, one obtains
a richer phenomenology at singular stimulation conditions
that give rise to large susceptibilities.

3 Network model

In this and the following sections, a network model is es-
tablished and analyzed for the particular case of SAM; this
model is transferred to the case of CAM as well as to quite
general stimulus binding later. A neural network usually
has two dynamical rules: the neuronal dynamics models the
activity of neurons and the coupling dynamics models the
change in synaptic connections (Pineda 1987). In addition,
the network architecture and stimulation should be specified
for an adapting neural network (Carmesin 1994a).

Notion of couplings.Many neurophysiological and biomo-
lecular events occur at each synapse. In 1949 Hebb pro-
posed the neurophysiological postulate that the efficiency
with which a presynaptic neuron can stimulate a postsynaptic
neuron increases whenever the presynaptic neuron stimulates
the postsynaptic neuron successfully. Inherent in this postu-
late is the replacement of neurophysiological and biomolecu-
lar events at each synapse by an abstract synaptic efficiency.
Such an abstract synaptic efficiency is usually called a cou-
pling. In the present paper (Carmesin 1994b), the synaptic
efficiency is composed of two factors: a prestabilized factor
ζijδ (modeling slowly changing quantities such as synap-
tic surface or number of parallel synapses) and a coupling
Kijδ (modeling rapidly changing quantities such as active
NMDA receptors). The increase in the fast couplingsKijδ

should be proportional to the slow coupling factorsζijδ (be-
cause these model the prestabilized biomass that takes part
in the synaptic modifications) and proportional to the fast
couplingsKijδ (this proportionality is slightly hypothetical
in the sense that there is no clear empirical evidence for
or against it; it is plausible in the sense that many biomass
changes are proportional to the current biomass, for various
reasons). Furthermore, the analysis of the network model
turns out to be much simpler in terms of the (transformed)
couplingsW 2

ijδ = Kijδ, because the dynamics exhibits a po-
tential in the space of the couplingsWijδ. Such potentials
have been assumed in some synergetics models (e.g., Kruse
et al. 1996). Of course, the modeled empirical quantities,
such as EEG potentials, are expressed in terms of the origi-
nal couplingsKijδ (see, for example, Carmesin 1994b).

Altogether, the binding of two stimuli is instantiated here
by the product of a fast and a slow coupling factor. Accord-
ingly, these two factorsKijδ andζijδ are denoted asbinding
factors. The generality of the concept of binding factors is
emphasized elsewhere (Carmesin 1994a,b). In this spirit, the
present network model (Carmesin 1994a,b) may be denoted
as abinding factor model of perception. From the point of
view of network theory, such stimulus binding is related to
neuronal self-organization of topological order (see, for in-
stance, Weiss 1928; Marshall et al. 1941; Willshaw and von
der Malsburg 1976; Carmesin 1994c,1996).

3.1 Network architecture

The network architecture is established by N sensor neurons
n̂j and by N inner neuronsni and by all possible couplings
Wijδ among inner neurons; thus a couplingWijδ transfers
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Fig. 3. Network architecture. Four inner neuronsn1, n2, n3, n4 correspond
to four stimulation dots. There are eight possible couplings; some of these
emerge according to the network dynamics. The emergent couplings estab-
lish binding of successive stimuli; this instantiates a motion percept
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Fig. 4. Prestabilized factors.Abscissa, coupling delay timeδ. Ordinate,
prestabilized coupling factor instantiating preferential binding of successive
and neighboring stimuli

signals from a neuronnj at a time stept to a neuronni
at a time stept + 1 + δ. The sensor neurons are stimulated
according to the above SAM (Fig. 1). Altogether the net-
work consists of four sensor neurons and four inner neurons
(Fig. 3).

3.2 Network dynamics

Neuronal states.The neurons take values 0/1 at discrete
time stepst = 1, 2, 3, . . ., that isnj(t) = 0/1 andni(t) = ni =
0/1. Here and in the following, the time index is omitted if
it is t.

Prestabilized coupling factors.This network model uses
couplingsWijδ that change during perception and so-called
prestabilized coupling factorsζijδ that do not change dur-
ing perception. This concept was introduced in Carmesin
(1994b); there and in Carmesin (1994a) it is explicated how
the fast couplingsWijδ might be instantiated by slow cou-
plings; neuroscientifically it is still an open question (the
study of which is currently in preparation) whether rapid
synaptic modifications are relevant for percept formation.

The prestabilized coupling factorsζijδ encodeGestalt
laws (Köhler 1920; Metzger 1975; Carmesin 1994a,b), such
as the rule that narrow and subsequent stimuli are bound
preferentially. Accordingly, a space factorζij is used with
ζij > ζkm for distance ( ˆni − n̂j) > distance ( ˆnk − n̂m).

The human nervous system prefers vertical percepts to
horizontal percepts. Thus the horizontal and vertical presta-
bilized factorsζh andζv are equal when the four stimuli are
arranged as a rectangle with length ratio (alias aspect ratio)
equal to 8/5.

Moreover, the preferential binding of subsequent stimuli
is expressed with a triangle-type function (Fig. 4)

ζijδ = ζij


δ/δmax for 0 < δ < δmax;
1− δ−δmax

δwidth−δmax
for δmax < δ < δwidth;

0 otherwise
(1)

Here the prestabilized factors are chosen arbitrarily and
only for the sake of explicitness. However, there are numer-
ous empirical data about the efficiency of stimulus binding
depending on the time interval and on the distance (Korte
1915; Caelli and Finlay 1981). Such stimulus binding effi-
ciencies indicate the values of the actual prestabilized factors
ζijδ; more quantitatively, one may adjust the prestabilized
factors ζijδ so that the network generates those stimulus
binding efficiencies that are observed empirically; this is be-
yond the scope of the present study.

Transferred signals.The signals transferred by the couplings
are expressed in terms of a local formal field

hi = n̂i(t− 1)− 1

+
1
2

δ=δwidth∑
δ=0

N∑
j

ζijδW
2
ijδ(t− 1)nj(t− 1− δ) (2)

That is, the external stimulation is transferred with a cou-
pling with one time step delay and with weight 1, the subtra-
hend−1 expresses a threshold and inner neurons contribute
according to the product of the prestabilized coupling factors
and the square of fast couplings. Due to the dependence of
hi on δwidth, previous time steps and the stochastic dynamics
introduced below (5), the network establishes aδwidth-order
Markov process. This stochastic process may be expressed
in terms of an equivalent first-order Markov process by in-
troducing the following notation

nδj (t) = nj(t− δ) ; nδj (t− 1) = nj(t− 1− δ) (3)

So one gets

hi = n̂i(t− 1)− 1 +
1
2

δ=δwidth∑
δ=0

N∑
j

ζijδW
2
ijδ(t− 1)nδj (t− 1)

(4)

Stochastic neuronal dynamics.The inner neuronsni prefer to
fire according to the stimulating local fieldhi; however, there
is the possibility that the inner neurons fire differently due
to random fluctuations. This is formalized by the Boltzmann
probability with afluctuation parameterT as follows:

PB(ni) =
exp[hini/T ]

1 + exp[hi/T ]
(5)

Coupling dynamics.A coupling weightWijδ is increased if
the presynaptic and postsynaptic firing are in accord. This is
modeled as follows:

∆WHebb
ijδ = aWijδζijδnin

δ
j (t− 1) (6)

Here, the coupling change∆WHebb
ijδ is proportional to a

learning parametera and to the present couplingWijδ (it is
typical for biological growth processes that biological mat-
ter, like a coupling, increases in proportion to its present
weight).

Dynamics of original couplings.The square in the formal
field hi is due to the original couplingsKijδ. Next, it is
shown that the coupling growth law takes the same form
for the original couplingsKijδ = W 2

ijδ. Using the partial
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derivative∂Kijδ/∂Wijδ = 2Wijδ, one gets∆KHebb
ijδ = 2Wijδ

∆WHebb
ijδ ; thus

∆KHebb
ijδ = 2aKijδζijδnin

δ
j (t− 1) (7)

Neuronal resource limit.Moreover, the above coupling dy-
namics is modeled with the effective constraint that the total
coupling weight at a presynaptic neuronnj is constant. This
is formalized in terms of a Euclidean norm and a radiusr
in coupling space:∑
δ

∑
i

W 2
ijδ = r2 (8)

An analogous relation is introduced for each postsynaptic
neuron:∑
δ

∑
j

W 2
ijδ = r2 (9)

These constraints are in agreement with the empirical ob-
servation that the connectivity is quite fixed at a neuron
(Reichert 1990).

The above effective constraint is achieved roughly by
the following additional coupling changes:

∆W norm
ijδ = −∂V prenorm

j

∂Wijδ
− ∂V postnorm

i

∂Wijδ
(10)

with

V prenorm
j = c

( N∑
i

W 2
ijδ − r2

)2

and

V postnorm
i = c

( N∑
j

W 2
ijδ − r2

)2
(11)

Here c is a constraint parameter which is larger than the
learning parametera. At the potential minimum, the neu-
ronal resource constraints, (8) and (9), are obeyed.

Resource deficits.An essential feature of perception is that
a percept becomes unstable after a while. This is modeled
here with so-calledresource deficitsXij . Physiologically,
this includes the possibility that the fast couplings decay
very rapidly (within 100–1000 ms, for instance); as a result,
the stimulus binding may be instantiated by the formation
and decay of coupling states (that is of networks) within
roughly 300 ms.

These resource deficits may be interpreted as a lack of at-
tention or as a lack of relevant neurotransmitters, that is,Xij

is a measure for a deficit in metabolic or other resources. A
resource deficitXij diminishes the corresponding fast cou-
plings

∆W resource
ijδ = −Xij(t− 1) (12)

A resource deficitXij diminishes with time and increases
by a corresponding fast coupling ‘activity’

∆Xij = −αcXij(t− 1) +βc
∑
δ

Wijδ(t− 1) (13)

Table 1. Model parameters used in the network model

Notation Parameter Comment
a Learning parameter Network dynamics
T Fluctuation rate Network dynamics

c, r Constraint parameters Neuronal resource limit
αc, βc Coupling resource parameters Resource dynamics

ν Frequency Stimulation

ζijδ Prestabilized coupling factor Codes Gestalt laws

The effect of the present resource deficits on the fast
couplings may be expressed in terms of a potential

∆W resource
ijδ = −∂V resource

ijδ

∂Wijδ
(14)

with

V resource
ijδ = WijδXij (15)

Altogether, the total coupling change is the sum

∆Wijδ = ∆WHebb
ijδ +∆W norm

ijδ +∆W resource
ijδ (16)

3.3 Model parameter overview

Table 1 gives an overview of model parameters used in
the network model. The table indicates that the basic net-
work dynamics of neurons and couplings is specified by
two parameters: the learning ratea indicating the veloc-
ity of coupling changes and the fluctuation rateT of neu-
ronal fluctuations. It is realistic to assume limited resources
at neurons and couplings. These are modeled with sim-
ple difference equations and give rise to two parameters
for each mechanism; in this manner, four further parame-
ters are plausible. The stimulation is characterized by a fre-
quencyν. The Gestalt laws that narrow and successive stim-
uli are bound preferentially are modeled (encoded) with cor-
responding coupling factorsζijδ. Altogether, the proposed
network model appears quite straightforward and relatively
simple.

4 Field theoretical solution of the network

Overview of the solution method.In order to solve the above
network model, one should specify the coupling matrices
that emerge as a result of the combined neuronal, coupling
and resource deficit dynamics. This is achieved here as fol-
lows (for a very detailed description see Carmesina 1994a).
First the combined dynamics is identified as taking place in
the combined set of states (n,W,X) of neuronal states{nδi },
couplings and resource deficits. This set may be regarded as
being embedded in avector spacewith continuous values
for neurons, couplings and resource deficits and with the
neuronal space, coupling space and resource deficit space
as subspaces. In this state set, the combined dynamics es-
tablishes aMarkov process, by construction. A reasonable
assumption of limited coupling resolution is introduced (this
assumption is obeyed, for example, by any computer simula-
tion). As a consequence, the process is ergodic. As a further
consequence, the averaged changes may be described by a
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vector field. The fast neuronal variables may be solved first
in a so-called adiabatic limit. The remaining coupling and
resource deficit dynamics is again separated adiabatically,
with the coupling dynamics being faster than the resource
deficit dynamics. The resulting coupling dynamics for adia-
batically fixed resource deficits is characterized by a differ-
ence equation that may be derived from a scalar potential.
The stationary states of the coupling dynamics are the lo-
cal potential minima. These stationary states represent the
possible emerging networks. As a consequence, the possible
emerging networks may be investigated by analyzing the po-
tential minima. The couplings of these emerging networks
establish the stimulus binding and thus the emerging per-
cepts. As a result of that analysis one obtains the resulting
emerging percepts and their changes due to the slow resource
deficit dynamics and due to statistical fluctuations.

4.1 Vector field

Because the combined dynamics is ergodic, it makes sense
to characterize the mean changes of combined states in terms
of the ensemble average of changes of combined states. This
average may be expressed in terms of the conditioned prob-
ability P [{ni}|{n̂i(t− 1)}, {nδi }(t− 1),W(t− 1), T ] that a
neuronal configuration{ni} is taken at the time stept under
the condition that at the time stept − 1 the stimulation is
{n̂j(t − 1)} and the combined state is{nδi (t)}(t − 1),W(t)
and the fluctuation parameter isT . In particular, given that
n specifies{nδi } with i = 1, 2, ..., N andδ = 0, ..., δwidth and
Pµ(t − 1) specifies the stimulation probability of patternµ
at time t − 1, this average is the following sum over all
possible neuronal events that are relevant for the changes:

〈(∆n, ∆W, ∆X)〉

=
2N∑

{n̂j (t−1)}
Pµ(t− 1)

2Nδwidth∑
{nδ

i
}
PC × (∆n, ∆W, ∆X) (17)

with the conditional probability

PC = P [{nδi }|{n̂j}(t− 1), {nδi }(t− 1),W(t− 1), T ] (18)

For the sake of explicitness, one may express the above tran-
sition probability in detail. For the caseδ = 0, the transition
probability is equal to the Boltzmann probabilityPB (5). For
the caseδ > 0, the transition probability is of a deterministic
type according to (3), that is,

nδj (t) = nj(t− δ) = nj(t− 1− (δ − 1)) = nδ−1
j (t− 1) (19)

This deterministic probability may be denoted byPD. Alto-
gether, the above probability may be expressed as a product
as follows:

PC = PBPD (20)

As a consequence, for eachT the mean changes
〈(∆n, ∆W, ∆X)〉 establish a vector field in the combined
space, because such mean changes are functions of the com-
bined state due to the condition of the above conditioned
probability and due to the fact that after averaging such mean
changes do not depend on the stimulation. This vector field
is called achange field(Carmesin 1994a).

Adiabatic limits. Typically, the neurons change on the time
scale of milliseconds, whereas the coupling change is slightly
slower and the resource changes are much slower. Thus one
may solve the motion of the fast neurons first by means of
an adiabatic limit (that is the leading order of a systematic
adiabatic approximation, as described in Haken (1983), and
then solve the changes of the slower couplings and resources.
Analogously one may solve the couplings secondly and the
resource deficits thirdly.

For the purpose of the adiabatic elimination of the fast
neuronal degrees of freedom one may proceed as follows (for
extensive details see Carmesian 1994a). One may consider
a fixed value of the slow couplings and resource deficits and
perform the average over the neuronal states (17), and one
may use the fact that the state{ni} is generated indepen-
dently from the state{nδi }(t − 1). As a result one obtains
for the mean change of couplings the sum over all possible
neuronal events relevant for the changes:

〈(∆W, ∆X)〉=
2N∑

{n̂j (t−1)}
Pµ(t− 1)

2Nδwidth∑
{nδ

i
}
PC×(∆W, ∆X) (21)

Next, one may turn to the adiabatic separation of the cou-
plings from the resource deficits. To this end one may con-
sider adiabatically fixed resource deficits; formally (21) is
expressed for fixedX as follows:

〈∆W〉 =
2N∑

{n̂j (t−1)}
Pµ(t− 1)

2Nδwidth∑
{nδ

i
}
PC× (∆W) at fixedX (22)

These mean coupling changes establish another vector field
in coupling space. For the sake of explicitness, one may
express the mean coupling change (21) in terms of the com-
ponents

〈∆Wijδ〉=
2N∑

{n̂j (t−1)}
Pµ

22Nδwidth∑
{nδ

i
}
PC×∆Wijδ at fixedXijδ (23)

Whenever a fixed point coupling stateW∗ is taken, it gives
rise to an adiabatic solution of the resource deficits according
to (13):

∆Xij = −αXij(t− 1) +β
∑
δ

W ∗
ijδ (24)

4.2 Potential field

The mean coupling change in (23) is a vector field in cou-
pling space. Next it is shown that this vector field turns out
to be a gradient of a scalar potential, the so-calledchange
potential (Carmesin 1994a), that is, a potential field.

Potential theorem. In the adiabatic limit, the mean cou-
pling change, (23), is the gradient of a scalar potential as
follows:

〈∆Wijδ〉 = − ∂V

∂Wijδ
(25)

with the scalar potential
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V = V Hebb +
N∑
j

V prenorm
j +

N∑
i

V postnorm
i +

∑
ijδ

V resource
ijδ (26)

V Hebb = −aT
2N∑
µ

Pµ lnZµ (27)

where the stimulation{n̂j} is denoted byµ and the formal
partition functions are

Zµ =
2Nδwidth∑
{nδ

i
}
PD exp[−Hµ/T ] (28)

and the formal energy functions are

Hµ = −
N∑
i=1

hini for a fixed stimulationµ (29)

Accordingly, the stable emerging networks are the local min-
ima of the scalar potentialV .

Interpretation of the change potential.The change potential
V establishes a synergetic potential function from which the
macroscopic phenomena may be derived as below and in
Kruse et al. (1996). By construction, the change potentialV
is neither an energy nor a free energy, because a free energy
is defined in equilibrium statistics. In contrast, the change
potentialV specifies mean changes at nonequilibrium states
of open or closed systems. Formally, the change potential
is similar to a free energy in the sense that it is a gen-
eralization of the free energy for non-equilibrium systems
(Carmesin 1995).

Principle underlying the proof.Formally, one may inter-
pret the determination of the potential as an integration;
for instance one may integrate (25), so one may getV =
− ∫Wijδ

0 〈∆Wijδ〉dWijδ. In this sense the method and the
results obtained arequite general. The fact that in the par-
ticular present case the resulting integral may be expressed in
terms of an explicit andrather simple functionis due to the
form of the probability (5) and of the whole network model.
In particular, methods of statistical physics are applied here
and generalized to the case of single objects such as single
neurons and couplings, whereas statistical physics deals with
systems in the limit of an infinite number of objects. For the
proof see Appendix A.

Interpretation of the potential theorem.The potentialV
makes possible an intuitive and simple understanding and
analysis of the emerging networks in terms of local potential
minima. Moreover, one may derive for any desired stimula-
tion (rather than equally distributed as above) the resulting
emerging networks. Conversely, one may design for a de-
sired network an appropriate stimulation that gives rise to
it.

4.3 Unique binding

Next it is shown that each inner neuron has exactly one
presynaptic and one postsynaptic neuron. The conditions for
it are stability (this is obeyed in practice) and normalization
[this is also obeyed in practice due to the additional dynamics
(10)].

Unique binding theorem. For coupling states that are lo-
cally stable with respect to stochastic fluctuations and with
respect to variations of the formal temperatureT and that
obey the normalization constraints: Each inner neuron has
exactly one presynaptic inner neuron and one postsynaptic
inner neuron.

Principle underlying the proof.There are two main under-
lying reasons for the unique binding theorem. First, biolog-
ical matter does typically grow in proportion to its current
biomass; this fact is used for coupling growth here and it
is inherent in the factorWijδ in the coupling dynamics (6).
This gives rise to the fact that large couplings tend to grow
faster than small couplings. Second, biological matter does
typically grow within certain limits. Such a limit is used at
a neuron in a quite local manner and is expressed via the
constraints (8) or alternatively via the additional dynamics
(10). It is already clear intuitively that the combination of
the first and second reasons gives rise to a tendency towards
states with one coupling at a neuron. For the proof see Ap-
pendix B.

5 Modeling phenomena

5.1 Stroboscopic alternative motion SAM

5.1.1 Emerging couplings

Couplings emerging at a neuron for low and intermediate
stimulation frequency.Due to the unique binding theorem,
exactly one couplingWijδ remains at a postsynaptic neuron
ni. In general, the remaining coupling connects neuronal
statesni andnδj that are both nonzero; such states are in-
dicated in Fig. 1. Among such nonzero states, thoseni and
nδj are connected that have the largest corresponding presta-
bilized factorζijδ. At low and intermediate stimulation fre-
quency the emerging coupling has a time delay larger than
δmax (Fig. 4). As a result, the emerging couplingWijδ has
the minimum possible delay,δMin = 1/8ν, because couplings
with shorter delay cannot provide a postsynaptic signal to
a currently stimulated neuron (Fig. 1). Moreovernj is a
neighbor ofni. Each neuronni has a horizontal neighbor
nh(i) and a vertical neighbornv(i). So, one of two possi-
ble nonzero couplings remain at a postsynaptic neuronni,
namelyWi,h(i),δMin andWi,v(i),δMin .

Emerging coupling states.Due to the unique binding the-
orem the network model exhibits four stationary coupling
states: vertical, horizontal, clockwise and counterclockwise
(Fig. 5). Humans, however, perceive mostly vertical or hor-
izontal percepts.
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n1 n1 n1n2 n2 n2

n3 n3 n3n4 n4 n4

Fig. 5. Emerging networks.Arrows indicate emergent couplings and thus
motion of dots in the generated motion percept.Left, vertical percept;mid-
dle, circular counter-clockwise percept (circular clockwise percept omitted
in figure); right, horizontal percept

A possible explanation is a follows. Circular percepts
are stable only forζh = ζv. If the preference for horizontal
percepts in humans is provided by a different system, that
is not by the present network, then that different system
generates a vertical percept preference atζh = ζv and the
network provides a non-circular preference atζh /= ζv. So
there remains no stimulation with stable circular percepts.

As a consequence, only two coupling states remain
(Fig. 5). In one coupling state, all couplings are horizontal:
Wi,h(i),δMin /= 0. In the other coupling state, all couplings are
vertical:Wi,v(i),δMin /= 0. Due to the symmetry of the stimu-
lation and of the network, all vertical couplingsWi,v(i),δMin

are equal and all horizontal couplingsWi,h(i),δMin are equal.
For the purpose of an illustrative analysis, the emerg-

ing coupling state is formally expressed in terms of a linear
combination of these two possible states. So the remaining
problem is two-dimensional. The decision between horizon-
tal and vertical emerging couplings may be expressed by the
angle variable in a polar coordinate system. That is,

Wi,h(i),δMin = ρ cosφ; Wi,v(i),δMin = ρ sinφ (30)

Resource deficit dynamics in terms of polar coordinates.
One may derive the resource changes by inserting (30) into
(13), so that one gets

∆Xi,h(i),δMin = −αcXi,h(i),δMin + βcρ cosφ

∆Xi,v(i),δMin = −αcXi,v(i),δMin + βcρ sinφ (31)

Next one may derive the corresponding coupling changes by
inserting (30) into (12), so that one obtains

∆W resource
i,h(i),δMin

(t) = −Xi,h(i),δMin (t− 1)

∆W resource
i,v(i),δMin

(t) = −Xi,v(i),δMin (t− 1) (32)

This coupling change may be expressed in terms of a poten-
tial

∆Wi,h(i),δresource
Min

= − ∂V resource

∂Wi,h(i),δMin

(33)

and

∆Wi,v(i),δresource
Min

= − ∂V resource

∂Wi,v(i),δMin

(34)

with

V resource= Wi,h(i),δMinXi,h(i),δMin +Wi,v(i),δMinXi,v(i),δMin (35)

The above potential may be explained in terms of polar co-
ordinates.

V resource= ρ cosφXi,h(i),δMin + ρ sinφXi,v(i),δMin (36)

5.1.2 Complete continuous dynamics

Next one may express the dynamics in terms of differential
quotients instead of difference quotients. Moreover one may
abbreviateXi,h(i),δMin by Xh andXi,v(i),δMin by Xv. So one
gets the full continuous dynamics in terms of the following
system of coupled differential equations [formally this is
obtained from (13), (23) and (26) via the transformation of
(30)]:

∂ρ

∂t
= −∂V

∂ρ

∂φ

∂t
= −∂V

∂φ

∂Xh

∂t
= −αcXh + βcρ cosφ

∂Xv

∂t
= −αcXv + βcρ sinφ (37)

with

V = V Hebb + V norm + V resource

and

V resource= ρ cosφ Xh + ρ sinφ Xv (38)

The two potentialsV Hebb andV norm are specified further in
(48) to (56).

5.1.3 Continuous phase transition

Explicit form of the potentialV Hebb in the Wi,h(i),δMin –
Wi,v(i),δMin plane for the case of relatively small prestabilized
couplings. Because the only candidates for nonzero cou-
plings areWi,h(i),δMin andWi,v(i),δMin , the formal local field
(2) takes the form

hi = n̂i(t− 1)− 1

+
1
2
ζi,h(i),δMinW

2
i,h(i),δMin

(t− 1)nh(i)(t− 1− δMin)

+
1
2
ζi,v(i),δMinW

2
i,v(i),δMin

(t− 1)nv(i)(t− 1− δMin) (39)

Only three stimulation patternsµ occur with nonzero proba-
bility Pµ, namelyµ = 1: (n̂1, n̂2, n̂3, n̂4) = (1, 0, 1, 0), µ = 2:
(0, 1, 0, 1) andµ = 3: (0, 0, 0, 0). The corresponding proba-
bilities Pµ are (Fig. 1)

Pµ =
1
3

for µ = 1, 2, 3 (40)

In the case being considered of relatively small prestabi-
lized couplings, a neuronni can in practice only fire if the
corresponding sensor neuron fired at the previous time step,
that is if n̂i(t− 1) = 1. In this case the threshold−1 cannot
be overcome without ˆni(t−1) = 1. For the sake of simplicity
one may express this as follows [for ˆnµi (t− 1) = 1]:

hµi =
1
2
ζi,h(i),δMinW

2
i,h(i),δMin

(t− 1)nh(i)(t− 1− δMin)

+
1
2
ζi,v(i),δMinW

2
i,v(i),δMin

(t− 1)nv(i)(t− 1− δMin)

hµi = −∞ otherwise (41)
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As a consequence, the formal energy for pattern 1 is obtained
from n2 = n4 = 0 and by inserting (39) into (29) fori = 1, 3.
So one gets:

H1 = − n1[ζi,h(i),δMinW
2
i,h(i),δMin

(t− 1)n2(t− 1− δMin)

− ζi,v(i),δMinW
2
i,v(i),δMin

(t− 1)n4(t− 1− δMin)]

− n3[ζi,h(i),δMinW
2
i,h(i),δMin

(t− 1)n4(t− 1− δMin)

− ζi,v(i),δMinW
2
i,v(i),δMin

(t− 1)n2(t− 1− δMin)] (42)

Analogously one obtains

H2 = − n2[ζi,h(i),δMinW
2
i,h(i),δMin

(t− 1)n1(t− 1− δMin)

− ζi,v(i),δMinW
2
i,v(i),δMin

(t− 1)n3(t− 1− δMin)]

− n4[ζi,h(i),δMinW
2
i,h(i),δMin

(t− 1)n3(t− 1− δMin)

− ζi,v(i),δMinW
2
i,v(i),δMin

(t− 1)n1(t− 1− δMin)]

H3 = −∞ (43)

To determine the formal partition functions (28) one should
determine the probabilitiesPD(ni, nj) for the neuronal con-
figurations ofni(t − 1− δMin) andnj(t − 1− δMin) for the
stimulation patternµ at time t while the other states{nδi }
are irrelevant due to zero couplingsWijδ (30). So one gets
Zµ = 0 for µ = 3 and

Z1 =
4∑

n2(t−1−δMin ),
n4(t−1−δMin )

PD(n2, n4)
4∑

n1,n3

exp[H1/T ] (44)

Because we are interested in the phase transition dynamics,
the probabilitiesPD(ni, nj) are not essential here; for sim-
plicity one may thus approximate these as being equal, that
is by 1

4. So one gets

Z1 =
1
4

4∑
n2(t−1−δMin )
n4(t−1−δMin )

4∑
n1,n3

exp[H1/T ]

Z2 =
1
4

4∑
n1(t−1−δMin )
n3(t−1−δMin )

4∑
n2,n4

exp[H2/T ] (45)

Inserting (42) and (43) and expanding the 16 possible con-
figurations, yields:

Z1 = Z2 =
1
4

(
7 + 2 exp[ζi,h(i),δMinW

2
i,h(i),δMin

(t− 1)/T ]

+ 2 exp[ζi,v(i),δMinW
2
i,v(i),δMin

(t− 1)/T ]

+ 4 exp[ζi,h(i),δMinW
2
i,h(i),δMin

(t− 1)/T

+ ζi,v(i),δMinW
2
i,v(i),δMin

(t− 1)/T ]

+ exp[2ζi,h(i),δMinW
2
i,h(i),δMin

(t− 1)/T

+ 2ζi,v(i),δMinW
2
i,v(i),δMin

(t− 1)/T ]
)

(46)

Next one may use polar coordinates:

Z1 = Z2 =
1
4

(
7 + 2 exp[ρ2ζi,h(i),δMin cos2φ/T ]

+ 2 exp[ρ2ζi,v(i),δMin sin2φ/T ]

+ 4 exp[ρ2(ζi,h(i),δMin cos2φ

+ ζi,v(i),δMin sin2φ)/T ]

+ exp[ρ2(2ζi,h(i),δMin cos2φ

+ 2ζi,v(i),δMin sin2φ)/T ]
)

(47)

So the potentialV Hebb is (27) up to an irrelevant term ln 4
and due toPµ = 1/3 (40):

V Hebb = −aT

3
ln
(

7 + 2 exp[ρ2ζi,h(i),δMin cos2φ/T ]

+ 2 exp[ρ2ζi,v(i),δMin sin2φ/T ]

+ 4 exp[ρ2(ζi,h(i),δMin cos2φ

+ ζi,v(i),δMin sin2φ)/T ]

+ exp[ρ2(2ζi,h(i),δMin cos2φ

+ 2ζi,v(i),δMin sin2φ)/T ]
)

(48)

Lower limit frequency.For sufficiently low stimulation fre-
quenciesν, one getsζi,j,δMin = 0 (Fig. 4). Then there occurs a
zero coupling productζi,j,δMin W

2
i,j,δMin

, so no stimulus bind-
ing and no motion percept occurs. The limit frequency is
determined as follows.

Potential V at small couplings.For small prestabilized cou-
pling factorsζijδ one obtains small couplingsWijδ. So it
is adequate to consider a power series expansion up to the
order 4 of the potentialV ; this is the essence of so-called
Ginzburg-Landau theory (Landau and Lifschitz 1979). Here
one may first consider fixed resource deficits. Up to fourth
order in the couplings, the potentialV Hebb takes the form

V Hebb = −aρ2

6

[
ζi,h(i),δMin cos2φ + ζi,v(i),δMin sin2φ

+
3
8
ρ2

T
ζ2
i,h(i),δMin

cos4φ +
3
8
ρ2

T
ζ2
i,v(i),δMin

sin4φ

+
ρ2

2T
cos2φ sin2φ ζi,h(i),δMinζi,v(i),δMin

]
(49)

Due to the emergence of two couplings (30), the nor-
malization potentials (10) take the form

V prenorm
i = V postnorm

j = c(ρ2 − r2)2 (50)

Up to the irrelevant constantc2r4, the sum of these potentials
takes the form

V norm =
N∑
i

V prenorm
i +

N∑
j

V postnorm
j

= 2Ncρ4 − 4r2Ncρ2 (51)

Thus at fixed resource deficits, the potential takes the form

V = V Hebb + V norm = (A1 −A2)ρ2 + (B1 −B2)ρ4 (52)

with abbreviations

A1 = −4Ncr2

A2 =
a

6
[ζi,h(i),δMin cos2φ + ζi,v(i),δMin sin2φ]

B1 = 2Nc

B2 =
3

8T
ζ2
i,h(i),δMin

cos4φ +
3

8T
ζ2
i,v(i),δMin

sin4φ

+
1

2T
cos2φ sin2φ ζi,h(i),δMinζi,v(i),δMin (53)
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Order parameter ρ
Fig. 6. Continuous phase transition.Abscissa, order parameter radiusρ;
ordinate, potentialV at fixed order parameter angleφ. Local minima occur
at fixedφ locally stable order parameter radiusρ. Upper curve, prestabilized
couplingsζ below critical valueζc with ρ = 0 (no stimulus binding).Middle
curve, ζ slightly aboveζc with small but nonzero order parameter radius
ρ /= 0. Lower curve, ζ aboveζc with nonzero order parameter radiusρ /= 0.
Continuous phase transition: the stable order parameter radiusρ changes
continuously as a function of the parameterA, that is ofζ

Fig. 7. Disambiguation.Abscissa, order parameter angleφ; ordinate, poten-
tial V Hebb at fixed nonzero order parameter radiusρ. Local minima occur at
fixed ρ locally stable order parameter angleφ. Upper curve, equal presta-
bilized factors for horizontal and vertical couplings yield equally stable
horizontal and vertical percepts.Lower curve, prestabilized horizontal cou-
pling factor twice as large as vertical coupling factor yields stable horizontal
percept only. Result: no mixed percepts emerge (disambiguation)

This potential is the basis for the phase transition scenario
according to Ginzburg-Landau theory (Landau and Lifshitz
1979) as follows. The complete set of differential equations
is given in Appendix C.

Phase transition scenario.For positive abbreviation param-
eterA = A1 − A2, the potential has one minimum atρ = 0,
that is, no couplings emerge, hence no percept is gener-
ated. AtA = 0 there occurs a continuous phase transition.
The order parameters are characterized in theρ-φ plane. For
simplicity, one may study the dependences separately.

For any fixed angle, one gets the classical scenario of a
continuous phase transition atA = 0. This may be analyzed
quantitatively as follows. In accordance with the unique
binding theorem, the locally stable states are atφ = 0 or
at φ = π/2. So it suffices at the phase transition to consider
the larger of the two prestabilized factors inA2, which may
be denoted byζ; the corresponding cos2 or sin2 is 1. Thus
at the transition,A2 takes the form

A2 =
a

6
ζ (54)

Hence the critical prestabilized coupling factor is

ζc =
6
a
A1 (55)

Thus the abbreviation parameterA takes the form

A =
a

6
(ζc − ζ) (56)

The prestabilized couplingζ may be varied according to
the frequencyν, for instance (Fig. 4); this yields the phase
transition scenario of Fig. 6.

For any nonzero fixed radiusρ one gets one or two local
minima: one corresponding to a vertical percept, one corre-
sponding to a horizontal percept (Fig. 7).

5.2 Circular apparent motion

5.2.1 Network theory

The case of the CAM can be treated analogously. The net-
work model is established by one inner neuronni and
one sensor neuron ˆni for each stimulus dot. For instance,
eight stimulus dots are positioned equidistantly on a cir-
cle (Kruse et al. 1995). There are eight corresponding inner
neurons. Any two neurons are connected with a coupling
including a prestabilized coupling factor. The prestabilized
coupling factors, the neuronal dynamics and the coupling
dynamics are as above.

The properties of the network model can be analyzed by
using the general potential and binding theorems. In accor-
dance with the unique binding theorem, each inner neuron
is connected to exactly one other inner neuron in the emerg-
ing cell assembly. Moreover, this other inner neuron is a
neighboring neuron, following Gestalt laws (see Sect. 3.2).
So there remain just two locally stable coupling states, one
of which binds the stimuli in clockwise order, the other in
counter-clockwise order.

5.2.2 Resulting phenomena

Succession at low frequency.At low frequency, the radius
order parameter (Fig. 6) is zero, so no motion percept occurs.

Oscillation at frequencies near the critical frequency of the
continuous phase transition.In the vicinity of the continu-
ous phase transition, the potential barrier that separates cou-
pling states with clockwise and counter-clockwise motion
percepts is very low. In addition, the current coupling state
becomes increasingly destabilized due to the limitation of
coupling resources. When the next stimulation occurs, this
state is already destabilized, due to the low potential barrier,
so the other motion percept is realized. Overall, the motion
percept oscillates. This is the same as the percept of os-
cillating dots. So the resulting percept is ‘dot oscillation’,
or so-called fluttering. This phenomenon is particularly in-
teresting because it shows that the potential barrier can be
overcome in a completely deterministic manner. While this
is remarkable in itself, it allows in addition efficient quanti-
tative experiments.
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CAM at high frequency.When the frequency is well above
the critical frequency, then the potential barrier separating
cell assemblies of clockwise and counter-clockwise percepts
is high. Thus the limitation of coupling resources destabilizes
the current state so slowly that several stimulations occur be-
fore the percept switches. The motion percept therefore oc-
curs with a hysteresis phenomenon (Kruse et al. 1995; and
analogously in Hock et al. 1993). Overall, from this point
of view, the oscillation corresponds to a (deterministic) ten-
dency to avoid the old state at the next stimulation, whereas
the hysteresis corresponds to a tendency to remain at the old
state at the next stimulation; oscillation and hysteresis are
thus two aspects of the same phenomenon – the negative or
positive correlation with the old state.

6 Discussion

Continuous phase transition.By definition, a phase transi-
tion is called continuousif the order parameter increases
continuously as a function of the control parameter.

For the case of vanishing resource deficitsXij and equal
preference for the vertical and orthogonal percept, that is
ζv = ζh, the two-dimensional order parameter (φ, ρ) is (0,0)
at the transitionζc; furthermore, for increasingζ the two-
dimensional order parameter (φ, ρ) becomes nonzero as a
continuous function of the couplingζ. Thus a continuous
phase transition occurs. The control parameter of this con-
tinuous phase transition is not uniquely determined; instead
there are several possible choices: for instance one may in-
crease the prestabilized couplings, decrease the temperature,
or increase the stimulation frequency. The last choice is re-
alized in the experiments (Kruse et al. 1996).

For the case of nonvanishing resource deficitsXij with
the introduced resource dynamics, the two-dimensional or-
der parameter (φ, ρ) is again (0,0) at the transitionζc and
again the two-dimensional order parameters (φ, ρ) increase
continuously for increasing prestabilized couplingsζ. So the
phase transition remains continuous.

For the sake of a complete discussion, it is added here
that the phase transition does have several properties that
are usually common to discontinuous phase transitions: the
potential functionV becomes asymmetric when the resource
deficits become asymmetricXh /= Xv, the angle component
φ of the order parameter varies discontinuously. However,
the essential point is that this is only due to the singular
behavior of polar coordinates in the vicinity of the pole;
the actual two-dimensional order parameter change remains
infinitesimal, as does the potential barrier∆V .

Scenario at high stimulation frequency.Due to the decrease
in prestabilized coupling factors for short time alias high
stimulation frequency (Fig. 4), a similar continuous phase
transition occurs at high stimulation frequency; such a tran-
sition is observed experimentally. In principle, there may
occur additional percepts at high stimulation frequency, due
to the fact that the prestabilized factor for the binding of suc-
cessive stimuli may become smaller than that for the binding
of nonsuccessive stimuli. Corresponding effects may be ob-
served in a film of a spoked wheel rotating: at low velocity

the spokes are perceived as rotating in the same direction
as the wheel, while the opposite direction is perceived at
appropriately high velocity.

Comparison with experiments.The indicated phenomena
are in agreement with psychophysical experiments (Kruse et
al. 1996). Further experiments concerning critical exponents
and fluctuations at the continuous transition are currently
in progress and in preparation. Moreover, the low change
potential barrier at the continuous transition gives rise to
sensitive measurement conditions; these might be advanta-
geous for experiments concerning underlying psychophysi-
cal mechanisms.

7 Physiological models for fast couplings

So far, the neural network has been used to model psycho-
logical and physiological empirical findings about percep-
tion. The neuronal dynamics and the coupling dynamics are
thus biologically quite plausible, due to the neuronal fluctu-
ations and due to the Hebb rule.

Each of the neurons modeled here for a single stimu-
lus dot is considered to correspond to various nerve cells,
presumably distributed in various cortical maps and areas.

As discussed at the beginning of the network model,
Hebbian coupling is, by definition (Hebb 1949), an abstract
and effective quantity, the physiological and molecular basis
of which has to be investigated (Brown et al. 1990; Kan-
del et al. 1991). Here the possible neuronal instantiation of
fast Hebbian couplings is discussed in more detail (Flohr
1991, 1994). According to a possible mechanism elaborated
in Carmesin (1994a,b), fast couplings might be instantiated
by small subnetworks indirectly. It is, however, also possible
that fast couplings are instantiated directly on the basis of
appropriate neuro-transmitters, a popular candidate being the
NMDA mechanism (Flohr 1991, 1994). The fast formation
of couplings has already been proposed by von der Malsburg
Willshaw and von der Malsburg 1976, Flohr 1991. Here it
is suggested that fast couplings do formand decay rapidly,
according to the modeling of the EEG data (Carmesin
1994a,b). On the basis of the present experimental and theo-
retical work, one may determine perception order parameters
quite precisely in the vicinity of a continuous phase transi-
tion; in particular, stochastic effects become relatively small
in comparison with the coupling resource effects and the
neuronal resource effects. As a result, the effect of possible
fast couplings may be studied quantitatively with relatively
high precision. Accordingly, the effect of neuropharmaco-
logical variations of possible fast couplings on perception
order parameters could be investigated quantitatively in fu-
ture experiments.

8 Conclusion

A general neuronal network model for stimulus binding dur-
ing perception (Carmesian 1994a,b) is extended, improved
and analyzed. The network is characterized byfast plastic
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couplings, prestabilized coupling factors, slow resource dy-
namics and by very fast stochastic neuronal dynamics. The
fast and prestabilized coupling factors are essential for stim-
ulus binding, so they are called binding factors and the net-
work model is denoted as thebinding factor model of per-
ception.

General analytic results are derived in the framework of
a field theory; in particular, apotentialthat characterizes the
dynamics is derived explicitly and it is shown that ambigu-
ous stimulus configurations aredisambiguated. The present
theory is based on the Hebb rule, is physiologically plau-
sible and may be understood as a special case of a more
general theory of neuronal adaptation; accordingly, quan-
titative comparisons of learning and perception are possi-
ble (Carmesin 1994a). Structurally, the present network pro-
vides a straightforward system for the instantiation of psy-
chological Gestalt laws, due to the prestabilized coupling
factors.

For prototypical stimulus sequences, variousphenomena
are derived. Many of these phenomena are reported in Kruse
et al. (1996). Thus acontinuous phase transitionis obtained
and characterized by a two-dimensional order parameter,
one component of which varies continuously and describes
a high susceptibility for external stimuli, while the other
component varies discontinuously and provides the disam-
biguation necessary for perception. At the continuous phase
transition, the slow resource dynamics becomes relevant and
gives rise to the new phenomenon of fluttering.

Experiments (Kruse et al. 1996) confirm the modeled
continuous transition, the fluttering including the determin-
istic percept oscillations, the change potential landscape in-
cluding its variation with the control parameter; the result-
ing disambiguation, preferential binding of narrow stim-
uli (Gestalt law) and hysteresis (Hock et al. 1993); and the
qualitative dynamics of the EEG brain potentials in the form
of P300 signals (Basar-Eroglu et al. 1993).

Due to the high sensitivity, the continuous phase transi-
tion is advantageous for experiments. Current and planned
experiments include EEG measurement of critical fluctua-
tions, quantitative determination of network parameters from
measurements of hysteresis loops, order parameter variation
in psycho-pathological persons, and order parameter varia-
tion as a function of psychopharmaceutical application.

From a theoretical point of view, continuous phase tran-
sitions are advantageous for the following reason: at the con-
tinuous transition there occurs a singularity; as a result all
non-singular mechanisms become irrelevant. The singular
mechanisms may be used for a system classification into
so-called universality classes and for a detailed study of the
relevant dynamics.

Strictly speaking, these additional phenomena relativize
the continuity of the transition. Nevertheless, perception phe-
nomena can be investigated empirically at the continuous
transition with the high precision typical of continuous phase
transitions, thus a diagnostic method might be provided. The
area of the hysteresis loop vanishes when approaching the
continuous phase transition.

The slow resource dynamics consists of two components:
an amplitude componentmodeling the typical P300 EEG
signal and astructural componentmodeling the typical loss
of attention for old percepts.

The fast couplings may be instantiated either by small
subnetworks or by fast neurotransmitters. Experiments that
might investigate theorigin of fast stimulus bindingduring
perception are currently in preparation.

Appendix A. Proof of the potential theorem

Organization of the proof.First the coupling average is
transformed successively until a useful form is obtained.
Second the potential gradient is transformed successively
until a useful form is obtained. Third the two results are
identified as being equal.

Part I: Transformation of the coupling average.To begin
with, one may take (23) and express the conditioned proba-
bility PC in terms of the product ofPD andPB , moreover
one may express the latter in terms of the probabilities in
(5), because this product is the desired probability that a
neuronal state{ni} is taken. So one gets

〈∆Wijδ〉 =
2N∑
{n̂j}

Pµ
2Nδwidth∑
{nδ

i
}
PD

N∏
i=1

PB ×∆Wijδ (A1)

Next one may insert the probabilities according to (5) and
express these probabilities in the denominator with the sum
of two exponentials. So one gets

〈∆Wijδ〉 =
2N∑
{n̂j}

Pµ
2Nδwidth∑
{nδ

i
}
PD

×
N∏
i=1

exp[hini/T ]∑2
ni=0/1 exp[hini/T ]

∆Wijδ (A2)

Here one may express the product in the numerator and in
the denominator separately. Thus one obtains

〈∆Wijδ〉 =
2N∑
{n̂j}

Pµ
2Nδwidth∑
{nδ

i
}
PD

×
∏N

i=1 exp[hini/T ]∏N
i=1

∑2
ni=0/1 exp[hini/T ]

∆Wijδ (A3)

In the numerator, one may express the product of exponen-
tials as an exponential of a sum. In the denominator, one
may exchange the product and the sum according to the dis-
tributive law, that is, the product of sums over two neuronal
values is equal to the sum over neuronal configurations of
products. So one gets

〈∆Wijδ〉 =
2N∑
{n̂j}

Pµ
2Nδwidth∑
{nδ

i
}
PD

× exp[
∑N

i=1hini/T ]∑2N

{ni}
∏N

i=1 exp[hini/T ]
∆Wijδ (A4)

Next one may identify the formal energy function in the
numerator and express the product of exponentials as an
exponential of a sum in the denominator. So one gets
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〈∆Wijδ〉 =
2N∑
{n̂j}

Pµ
2Nδwidth∑
{nδ

i
}
PD

× exp[−Hµ/T ]∑2N

{ni} exp[
∑N

i=1hini/T ]
∆Wijδ (A5)

Now one may identify the formal energy function in the
denominator. So one obtains

〈∆Wijδ〉 =
2N∑
{n̂j}

Pµ
2Nδwidth∑
{nδ

i
}
PD

× exp[−Hµ/T ]∑2N

{ni} exp[−Hµ/T ]
∆Wijδ (A6)

Here one may identify the formal partition function in the
denominator. So one derives

〈∆Wijδ〉 =
2N∑
{n̂j}

Pµ
2Nδwidth∑
{nδ

i
}
PD exp[−Hµ/T ]

Zµ
∆Wijδ (A7)

Part II: Transformation of the potential gradient.For the
purpose of a later comparison, one may perform the gradient
of the scalar potentialV Hebb

− ∂V Hebb

∂Wijδ
= −a

2N∑
{n̂j}

Pµ
2Nδwidth∑
{nδ

i
}
PD exp[−Hµ/T ]

Zµ

∂Hµ

∂Wijδ

(A8)

with (4)

∂Hµ

∂Wijδ
=

∂

∂Wijδ

(
− 1

2

∑
km

nk

[
n̂k(t− 1)

+
δ=2δwidth∑
δ′=0

ζkmδ′W
2
kmδ′ (t− 1)nδ

′
m(t− 1)

])
(A9)

The above partial derivative yields nonzero terms only if
the indices ofWijδ are equal to the corresponding ones of
Wkmδ′ . So one gets

∂Hµ

∂Wijδ
= −ζijδWijδ(t− 1)nδj (t− 1)ni (A10)

By comparison of this expression with (6) one obtains

∂Hµ

∂Wijδ
= −∆WHebb

ijδ /a (A11)

Next one may insert this result in (A8), so one gets

− ∂V Hebb

∂Wijδ
=

2N∑
{n̂j}

Pµ
2Nδwidth∑
{nδ

i
}
PD exp[−Hµ/T ]

Zµ
∆WHebb

ijδ (A12)

Part III: Identity of coupling average and potential gradient.
By comparison of this expression with (A7) one obtains

〈∆WHebb
ijδ 〉 = − ∂V Hebb

∂WHebb
ijδ

(A13)

Moreover, due to the fact that the coupling changes∆W norm
ijδ

and ∆W resource
ijδ may be averaged without effect here, one

gets

〈∆Wijδ〉 = − ∂V

∂Wijδ
(A14)

q.e.d.

Appendix B. Proof of the unique binding theorem

Organization of the proof.First the essential competition
among the couplings is expressed adequately in multidimen-
sional polar coordinates. Second the emerging networks are
analyzed as the potential minima by taking the derivatives
and by extracting the conditions under which these deriva-
tives vanish.

Proof. One may use multidimensional polar coordinates for
the couplings as follows (10):

Wijδ = r cosϑijδ
Wi+1jδ = r sinϑijδ cosϑi+1,j,δ

Wijδ+1 = r sinϑijδ sinϑi+1,jδ cosϑi+1,j,δ+1 (B1)

. . .

The networks that are locally stable with respect to stochastic
fluctuations are specified by the local minima of the potential
V . Consequently, the partial derivatives of the potentialV
with respect to the above angle variables vanish for these
networks, that is

∂V

∂ϑmkδ
= 0 (B2)

To determine the form of such a derivative, one may recall
that any angular variableϑmjδ in the potentialV occurs in
terms of a cos2ϑmjδ or in terms of a sin2 ϑmjδ, because the
couplings enter the potential in terms of squares [see (5),
(B1), (27), (28) and (29)]. Consequently, the derivative of
the potentialV with respect to such an angular variableϑmjδ

is proportional to sinϑmjδ cosϑmjδ, in accordance with the
chain rule. That is, each such derivative is of the form

∂V

∂ϑmjδ
= sinϑmjδ cosϑmjδrest(T ) = 0 (B3)

wherebyrest(T ) denotes the remaining factor, which is a
function of the formal temperature. Consequently, a net-
work that is locally stable with respect to stochastic fluc-
tuations obeys either sinϑmjδ cosϑmjδ = 0 or rest(T ) = 0.
The networks that do not obey sinϑmjδ cosϑmjδ = 0 do
obey rest(T ) = 0; thus they vary with the formal temper-
ature, and hence they are not stable with respect to tem-
perature variations. As a consequence, those networks that
are locally stable with respect to stochastic fluctuations and
with respect to variations of the formal temperatureT do
obey sinϑmjδ cosϑmjδ = 0. This impliesϑmjδ = 0 or
ϑmjδ = π/2. Thus [see (B1)]Wikδ is either 0 orr.

Moreover, one may recall the constraints [see (8)]r2 =∑
m

∑
δW

2
mjδ. They imply that at each inner neuronnj ,

there is exactly one nonzero couplingWmjδ = r to another
inner neuron.
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Analogously, the constraintsr2 =
∑

j

∑
δW

2
mjδ [see

(8)] imply that at each inner neuronnm, there is exactly
one nonzero couplingWmjδ = r from another inner neuron.
That is, each inner neuron is connected with exactly one
presynaptic inner neuron and with exactly one postsynaptic
inner neuron. q.e.d.

Appendix C. Complete set of equations

The complete set of differential equations is derived from
(37) and (52). One obtains:

∂ρ

∂t
= 8N c r2ρ

+
a

3

(
ζi,h(i),δMin cos2φ + ζi,v(i),δMin sin2φ

)
ρ

− 8N C ρ3 +
3
2

ζ2
i,h(i),δMin

cos4φ

T
ρ3

+
3
2

ζ2
i,v(i),δMin

sin4φ

T
ρ3

+ 2
cos2φ sin2φ ζi,h(i),δMin ζi,v(i),δMin

T
ρ3

− cosφ Xh − sinφ Xv

∂φ

∂t
= −a

3
ζi,h(i),δMin cosφ sinφ ρ2

+
a

3
ζi,v(i),δMin sinφ cosφ ρ2

− 3
2

ζ2
i,h(i),δMin

cos3φ sinφ

T
ρ4

+
3
2

ζ2
i,v(i),δMin

sin3φ cosφ

T
ρ4

− cosφ sin3φ ζi,h(i),δMin ζi,v(i),δMin

T
ρ4

+
cos3φ sinφ ζi,h(i),δMin ζi,v(i),δMin

T
ρ4

+ ρ sinφXh − ρ cosφ Xv

∂Xh

∂t
= −αcXh + βcρ cosφ

∂Xv

∂t
= −αcXv + βcρ sinφ (C1)

Acknowledgement.We are grateful for stimulating discussions and collab-
orations with Hans Flohr, Martin Kreyscher, Peter Kruse, Sandra Müller,
Lars Pahlke, Gerhard Roth, Florian Sander, Helmut Schwegler, Michael
Stadler and Daniel Strüber.
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